Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Efficiency of [2+2] photodimerization of various stilbene derivatives within the DNA duplex scaffold

Tetsuya Doi, Hiromu Kashida,* and Hiroyuki Asanuma*

Scheme S1. Synthesis of phosphoramidite monomers tethering stilbene, *p*-cyanostilbene, *p*-nitrostilbene, and *p*-dimethylaminostilbene. Reagents and conditions: a) Pd(OAc)₂, PPh₃, NMe₃, DMF, 100 °C, overnight, S: 52.2%, S_{CN} : 52.2%, S_A : 72.6%. b) EDC, HOBt, NEt₃, DMF, r.t., overnight, S: 69.2%, S_{CN} : 92.5%, S_A : 53.6%, S_D : 57.5%. c) (iPr)₂NP(Cl)(OCH₂CH₂CN), NEt₃, THF, 0 °C, 20 min, S: 92.3%, S_{CN} : 68.5%, S_A : 77.8%, S_D : 65.2%.

Compound 1 (R = NMe₂) and compound 2 were synthesized according to the previous reports.^{1, 2} The phosphoramidite monomers tethering stilbene (S), *p*-cyanostilbene (S_{CN}), *p*-nitrostilbene (S_A), and *p*-dimethylaminostilbene (S_D) were synthesized as follows:

General Procedure for Synthesis of Compound 1 (except for R = NMe₂)

To a stirred solution of iodobenzene (2.04 g, 10 mmol), 4-bromobenzonitrile (1.82 g, 10 mmol), or 4bromonitrobenzene (2.02 g, 10 mmol) in DMF (30 mL) was added 4-vinylbenzoic acid (1.48 g, 10 mmol), palladium(II) acetate (22.4 mg, 1 mol%), triphenylphosphine (52.5 mg, 2 mol%) and triethylamine (15 mL). After the reaction mixture was heated at 100 °C overnight, the solvent was removed by evaporation and filtered with ethyl acetate. The obtained residue was used in the next reaction without further purification. S: (Yield: 52.2%) ¹H-NMR [DMSO- d_6 , 500 MHz] δ =7.97 (d, J = 8.5 Hz, 2H, aromatic protons), 7.76 (d, J = 8.5 Hz, 2H, aromatic protons), 7.68 (d, J = 8.5 Hz, 2H, aromatic protons), 7.40 (m, 5H, aromatic protons and vinyl protons). ¹³C-NMR [DMSO- d_6 , 125 MHz] δ = 168.6, 142.9, 138.1, 132.4, 131.2, 131.0, 130.3, 129.7, 128.9, 128.3, 127.9. HRMS(FAB) (*m/z*): [M]⁺ Calcd for C₁₅H₁₂O₂ 224.0832; found 224.0838. **S**_{CN}: (Yield: 52.2%) ¹H-NMR [DMSO- d_6 , 500 MHz] δ =8.00 (d, J = 8.5 Hz, 2H, aromatic protons), 7.90 (d, J = 8.5 Hz, 2H, aromatic protons), 7.87 (d, J = 8.5 Hz, 2H, aromatic protons), 7.80 (d, J = 8.5 Hz, 2H, aromatic protons), 7.61 (d, J = 17 Hz, 1H, vinyl proton), 7.53 (d, J = 17 Hz, 1H, vinyl proton). ¹³C-NMR [DMSO- d_6 , 125 MHz] δ = 168.5, 142.9, 142.1, 135.6, 134.2, 132.6, 131.7, 131.3, 131.1, 130.7, 128.9, 128.5, 127.7, 120.4, 111.5. HRMS(FAB) (*m/z*): [M]⁺ Calcd for C₁₆H₁₁NO₂ 249.0784; found 249.0760. S_A : (Yield: 72.6%) ¹H NMR [DMSO- d_6 , 500MHz] δ =8.30 (d, J = 8.5 Hz, 2H, aromatic protons), 8.01 (d, J = 8.5 Hz, 2H, aromatic protons), 7.95 (d, J = 8.5 Hz, 2H, aromatic protons), 7.82 (d, J= 8.5 Hz, 2H, aromatic protons), 7.66 (d, J = 17 Hz, 1H, vinyl proton), 7.61 (d, J = 17 Hz, 1H, vinyl proton). ¹³C-NMR [DMSO- d_6 , 125 MHz] δ = 168.5, 148.0, 145.0, 142.0, 133.6, 132.1, 131.3, 131.1, 130.2, 129.5, 129.2, 128.6, 127.7, 125.5. HRMS(FAB) (*m*/*z*): [M]⁺ Calcd for C₁₅H₁₁NO₄ 269.0683; found 269.0585.

General Procedure for Synthesis of Compound 3

To a stirred solution of 1 (1.0 equiv) and triethylamine (2.8 equiv) in DMF was added HOBt (1.6 equiv), EDC (1.6 equiv) and **2** (1.2 equiv), and the mixture was stirred overnight. Ethyl acetate was added, and

the organic layer was washed with saturated aqueous solution of NaHCO₃ and NaCl. After drying over MgSO₄, the solvent was removed by evaporation, followed by silica gel column chromatography using hexane and ethyl acetate as eluent (3% triethylamine was added). S: (Yield: 69.2%)¹H-NMR [DMSO- d_6 , 500 MHz] δ =8.06 (d, J = 9.0 Hz, 1H, -NHCO-), 7.96 (d, J = 8.5 Hz, 2H, aromatic protons of stilbene), 7.76 (d, J = 8.5 Hz, 2H, aromatic protons of stilbene), 7.68 (d, J = 8.5 Hz, 2H, aromatic protons of stilbene), 7.46-7.23 (m, 14H, aromatic protons of DMT and stilbene and vinyl protons), 6.88 (m, 4H, aromatic protons of DMT), 4.63 (d, J = 6.0 Hz, 1H, -OH), 4.18 (m, 1H, -CH₂-CH(NH-)-CH(CH₃)), 4.08 (m, 1H, -CH(CH₃)-OH), 3.76 (s, 6H, -C₆H₄-OCH₃), 3.26, 3.01 (m, each 1H, -CH₂-ODMT), 1.06 (d, J =6.5 Hz, 3H, -CH(CH₃)-OH). ¹³C-NMR [DMSO- d_6 , 125 MHz] δ = 167.6, 159.4, 146.6, 141.2, 138.2, 137.4, 137.3, 134.9, 131.6, 131.2, 130.2, 129.5, 129.3, 129.2, 129.0, 128.1, 128.0, 127.6, 114.5, 86.6, 66.7, 64.5, 56.7, 56.4, 21.8. HRMS(FAB) (m/z): [M]⁺ Calcd for C₄₀H₃₉NO₅ 613.2823; found 613.2801. S_{CN}: (Yield: 92.5%) ¹H-NMR [DMSO- d_6 , 500 MHz] δ =8.10 (d, J = 9.0 Hz, 1H, -NHCO-), 7.99 (d, J = 8.0 Hz, 2H, aromatic protons of p-cyanostilbene), 7.90 (d, J = 8.5 Hz, 2H, aromatic protons of p-cyanostilbene), 7.87 (d, J = 8.5 Hz, 2H, aromatic protons of *p*-cyanostilbene), 7.81 (d, J = 8.5 Hz, 2H, aromatic protons of p-cyanostilbene), 7.59 (d, J = 16.5 Hz, 1H, vinyl proton), 7.47 (d, J = 16.5 Hz, 1H, vinyl proton), 7.44-7.26 (m, 9H, aromatic protons of DMT), 6.88 (m, 4H, aromatic protons of DMT), 4.64 (d, J = 6.0 Hz, 1H, -OH), 4.18 (m, 1H, -CH₂-CH(NH-)-CH(CH₃)), 4.07 (m, 1H, -CH(CH₃)-OH), 3.76 (s, 6H, -C₆H₄-OCH₃), 3.27, 3.01 (m, each 1H, -CH₂-ODMT), 1.06 (d, J = 6.5 Hz, 3H, -CH(CH₃)-OH). ¹³C-NMR [DMSO- d_6 , 125 MHz] δ = 167.5, 159.4, 146.6, 143.0, 140.5, 137.3, 137.2, 135.7, 134.1, 132.8, 131.2, 129.9, 129.4, 129.2, 129.1, 128.8, 128.7, 128.2, 128.0, 114.5, 111.3, 86.6, 66.7, 64.5, 56.7, 56.4, 21.8. HRMS(FAB) (m/z): $[M]^+$ Calcd for C₄₁H₃₈N₂O₅ 638.2775; found 638.2799. S_A: (Yield: 53.6%) ¹H NMR [DMSO-d₆, 500 MHz] δ =8.30 (d, J = 9.0 Hz, 2H, aromatic protons of p-nitrostilbene), 8.11 (d, J = 8.5 Hz, 1H, -NHCO-), 8.00 (d, J = 8.5 Hz, 2H, aromatic protons of *p*-nitrostilbene), 7.95 (d, J = 8.5 Hz, 2H, aromatic protons of *p*-nitrostilbene), 7.83 (d, J = 8.5 Hz, 2H, aromatic protons of *p*-nitrostilbene), 7.65 (d, J=17 Hz, 1H, vinyl protones), 7.60 (d, J=17 Hz, 1H, vinyl protones), 7.45-7.22 (m, 9 H, aromatic protons of DMT), 6.87 (m, 4 H, aromatic protons of DMT), 4.64 (d, J=6.0 Hz, 1H, -OH), 4.18 (m, 1H, -CH₂-CH(NH-)-CH(CH₃)), 4.08 (m, 1H, -CH(CH₃)-OH), 3.76 (s, 6H, -C₆H₄-OCH₃), 3.27, 3.02 (m, each 1H, -CH₂-ODMT), 1.07 (d, J=6.0 Hz, 3H, -CH(CH₃)-OH). ¹³C-NMR [DMSO- d_6 , 125 MHz] δ = 167.5, 159.4, 147.9, 146.6, 145.2, 140.4, 137.4, 137.2, 135.8, 133.8, 131.2, 129.5, 129.4, 129.2, 129.0, 128.3, 128.0, 125.5, 114.5, 86.6, 66.7, 64.5, 56.7, 56.4, 21.8. HRMS(FAB) (m/z): [M]⁺ Calcd for C₄₀H₃₈N₂O₇ 658.2674; found 658.2675. **S**_D: (Yield: 57.5%) ¹H NMR [DMSO- d_6 , 500 MHz] δ =7.99 (d, 1H, J=8.5 Hz, -NHCO-), 7.92 (d, 2H, J=8.5 Hz, aromatic protons of p-dimethylaminostilbene), 7.67 (d, 2H, J=8.5 Hz, aromatic protons of p-dimethylaminostilbene), 7.51 (d, 2H, J=9.0 Hz, aromatic protons of pdimethylaminostilbene), 7.44-7.22 (m, 10 H, aromatic protons of DMT and vinyl proton), 7.01 (d, 1H, J=16.5 Hz, vinyl proton), 6.88 (m, 4 H, aromatic protons of DMT), 6.77 (d, 2H, J=9.0 Hz, aromatic protons of p-dimethylaminostilbene), 4.62 (d, 1H, J=6.5 Hz, -OH), 4.17 (m, 1H, -CH₂-CH(NH-)-CH(CH₃)), 4.08 (m, 1H, -CH(CH₃)-OH), 3.76 (s, 6H, -C₆H₄-OCH₃), 3.26, 3.02 (m, 1H, -CH₂-ODMT), 2.99 (s, 6H, $-C_6H_4$ -N(CH₃)₂), 1.06 (d, 3H, J=6.0 Hz, $-CH(CH_3)$ -OH). ¹³C-NMR [DMSO- d_6 , 125 MHz] δ = 167.6, 159.6, 159.5, 159.4, 151.7, 146.6, 142.1, 137.3, 133.8, 132.0, 131.1, 129.3, 129.2, 129.1, 128.0, 126.9, 126.0, 124.0, 114.7, 114.5, 113.6, 87.0, 86.6, 76.4, 66.7, 64.5, 59.4, 56.6, 56.5, 56.4, 21.8. HRMS(FAB) (m/z): [M]⁺ Calcd for C₄₂H₄₄N₂O₅ 656.3245; found 656.3246.

General Procedure for Synthesis of Compound 4

Triethylamine (5.0 equiv) and 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (2.0 equiv) were added to a solution of compound **3** (1.0 equiv) in THF at 0 °C. After 20 min of vigorous stirring on ice, an excess of ethyl acetate was added to the reaction mixture, and the mixture was washed with saturated aqueous solution of NaHCO₃ and with NaCl. After drying over MgSO₄, the solvent was removed by evaporation, followed by silica gel column chromatography using hexane and ethyl acetate as eluent (3% triethylamine was added). **S**: (Yield: 92.3%) ³¹P NMR [DMSO-*d*₆, 121 MHz] δ =147.9, 147.7 ppm. **S**_{CN}: (Yield: 68.5%) ³¹P NMR [DMSO-*d*₆, 121 MHz] δ =147.9, 147.7 ppm. **S**_A: (Yield: 77.8%) ³¹P NMR [DMSO-*d*₆, 121 MHz] δ =147.9, 147.7. **S**_D: (Yield: 65.2%) ³¹P NMR [DMSO-*d*₆, 121 MHz] δ =147.9, 147.7.

References

Clement, B.; Weide, M.; Ziegler, D. M. *Chem. Res. Toxicol.* **1996**, *9*, 599-604.
 Hara, Y.; Fujii, T.; Kashida, H.; Sekiguchi, K.; Liang, X.G.; Yoshida, Y.; Asanuma, H. *Angew. Chem. Int. Ed.* **2010**, *49*, 5502 –5506.

Fig. S1. UV-vis spectra of **Xa/Yb** and **Xa/N** duplexes (**X**, **Y** = **S**_{CN}, **Z**, **B**, **S**_A or **S**_D). Conditions are as follows: $[ODN] = 5.0 \ \mu\text{M}$, $[NaCl] = 100 \ \text{mM}$, pH 7.0 (10 mM phosphate buffer), pH 9.0 (10 mM Tris buffer) for **S**_D, pH 5.0 (10 mM MES buffer) for **S**_D(**H**⁺), 20 °C.

Fig. S2. MALDI-TOF MS charts of **Sa/Sb** before and after 180 sec UV irradiation (340 nm). Calculated mass for $[Sa+H^+]:3072$, $[Sb+H^+]:3112$, $[Sa/Sb+H^+]:6182$.

Fig. S3. Melting curves of **Sa/Sb** before (broken line) and after 340 nm UV irradiation for 180 sec (solid line). Conditions are as follows: $[ODN] = 5.0 \,\mu\text{M}$, $[NaCl] = 100 \,\text{mM}$, pH 7.0 (10 mM phosphate buffer).

Fig. S4. HPLC chromatograms of $S_{CN}a/S_{CN}b$ before and after 300 sec UV irradiation (340 nm).

Fig. S5. MALDI-TOFMS charts of $S_{CN}a/S_{CN}b$ before and after 300 sec UV irradiation (340 nm). Calculated mass for $[S_{CN}a+H^+]$:3097, $[S_{CN}b+H^+]$:3137, $[S_{CN}a/S_{CN}b+H^+]$:6232.

Fig. S6. HPLC chromatograms of S_Da/S_Db (H⁺) before and after 300 sec UV irradiation (340 nm) at pH5.

Fig. S7. MALDI-TOFMS charts of S_Da/S_Db (H⁺) before and after 300 sec UV irradiation (340 nm). Calculated mass for $[S_Da+H^+]$:3115, $[S_Db+H^+]$:3155, $[S_Da/S_Db+H^+]$:6268.

Table	S1. Neighboring	base pair de	pendence of o	quantum vields	of S. Z and B.
		ouse puir as	pencence or .	1	or 0, 2 and 2 .

		$\Phi(\times 10^{2})$	
	S	Z	B
Xa/Yb	15	1.7	2.4
Xc/Yd	23	6.9	10
Xe/Yf	12	0.56	0.77

Xa: 5'-GCATC X AGTC-3' Yb: 3'-CGTAG Y TCAG-5'

Xc: 5'-GCACT X AGTC-3' Yd: 3'-CGTGA Y TCAG-5'

Xe: 5'-GCATC X GATC-3' Yf: 3'-CGTAG Y CTAG-5'

$$(X, Y = S, Z, B)$$

Fig. S8. Quantum yields of homo-photodimerizations (bar graph) and calculated energy level of LUMO and HOMO.

Fig. S9. Quantum yields of homo-photodimerizations (bar graph) and calculated excitation energies (line graph). $\Delta E = E_{LUMO} - E_{HOMO}$. **B** was measured at pH 9. The quantum yield of **B** at pH9 was 5.3.

Fig. S10. UV- vis spectra of **Xa/Sb** duplexes ($\mathbf{X} = \mathbf{S}_{CN}$, \mathbf{Z} , \mathbf{B} , \mathbf{S}_{A} or \mathbf{S}_{D}) before and after indicated duration of UV irradiation (340 nm). Conditions are as follows: [ODN] = 5.0 μ M, [NaCl] = 100 mM, pH 7.0 (10 mM phosphate buffer), pH 9.0 (10 mM Tris buffer) for \mathbf{S}_{D} , pH 5.0 (10 mM MES buffer) for $\mathbf{S}_{D}(\mathbf{H}^{+})$, 20 °C.

Fig. S11. UV- vis spectra of **Xa**/**S**_{CN}**b** duplexes (**X** = **S**, **Z**, **B**, **S**_A or **S**_D) before and after indicated duration of UV irradiation (340 nm). Conditions are as follows: [ODN] = $5.0 \,\mu$ M, [NaCl] = $100 \,\text{mM}$, pH 7.0 (10 mM phosphate buffer), pH 9.0 (10 mM Tris buffer) for **S**_D, pH 5.0 (10 mM MES buffer) for **S**_D(**H**⁺), 20 °C.

Fig. S12. UV- vis spectra of **Xa/Zb** duplexes (**X** = **S**, **S**_{CN}, **B**, **S**_A or **S**_D) before and after indicated duration of UV irradiation (340 nm). Conditions are as follows: [ODN] = $5.0 \,\mu$ M, [NaCl] = $100 \,\text{mM}$, pH 7.0 (10 mM phosphate buffer), pH 9.0 (10 mM Tris buffer) for **S**_D, pH 5.0 (10 mM MES buffer) for **S**_D(**H**⁺), 20 °C.

Fig. S13. UV- vis spectra of **Xa/Bb** duplexes (**X** = **S**, **S**_{CN}, **Z**, **S**_A or **S**_D) before and after indicated duration of UV irradiation (340 nm). Conditions are as follows: [ODN] = $5.0 \,\mu$ M, [NaCl] = $100 \,\text{mM}$, pH 7.0 (10 mM phosphate buffer), pH 9.0 (10 mM Tris buffer) for **S**_D, pH 5.0 (10 mM MES buffer) for **S**_D(**H**⁺), 20 °C.

Fig. S14. UV- vis spectra of **Xa**/**S**_A**b** duplexes (**X** = **S**, **S**_{CN}, **Z**, **B** or **S**_D) before and after indicated duration of UV irradiation (340 nm). Conditions are as follows: [ODN] = $5.0 \,\mu$ M, [NaCl] = $100 \,\text{mM}$, pH 7.0 (10 mM phosphate buffer), pH 9.0 (10 mM Tris buffer) for **S**_D, pH 5.0 (10 mM MES buffer) for **S**_D(**H**⁺), 20 °C.

Fig. S15. UV- vis spectra of **Xa**/**S**_D**b** duplexes (**X** = **S**, **S**_{CN}, **Z**, **B** or **S**_A) before and after indicated duration of UV irradiation (340 nm). Conditions are as follows: $[ODN] = 5.0 \ \mu\text{M}$, $[NaCl] = 100 \ \text{mM}$, pH 9.0 (10 mM Tris buffer), 20 °C.

Fig. S16. UV- vis spectra of **Xa**/**S**_D**b** (**H**⁺) duplexes (**X** = **S**, **S**_{CN}, **Z**, **B** or **S**_A) before and after indicated duration of UV irradiation (340 nm). Conditions are as follows: [ODN] = 5.0μ M, [NaCl] = 100μ M, pH $5.0 (10 \mu$ M MES buffer), $20 \,^{\circ}$ C.

	$T_{ m m}$ / $^{ m o}$ C $^{ m a}$							
	Sa	S _{CN} a	Za	Ba	S _A a	$S_D a^b$	$S_Da(H^+)^c$	
Sb	42.4	46.5	51.1	45.3	48.6	39.4	36.0	
S _{CN} b	46.0	53.8	55.4	49.0	56.3	47.7	40.5	
Zb	49.7	54.4	53.6	50.4	56.2	47.5	42.2	
Bb	44.9	49.5	52.0	46.1	51.3	41.2	42.3	
S _A b	47.9	56.4	57.2	51.3	58.1	47.4	41.4	
$\mathbf{S}_{\mathbf{D}}\mathbf{b}^{\mathrm{b}}$	39.6	47.6	48.8	41.4	48.1	37.5	-	
$S_D b(H^+)^c$	35.0	39.8	44.7	44.2	42.5	-	36.7	

Table S2. Melting temperatures of duplexes in homo and hetero combinations.

^aConditions: 5.0 μM DNA, 100 mM NaCl, pH 7.0 (10 mM phosphate buffer). ^bMeasured at pH 9 (Tris buffer). ^bMeasured at pH 5 (MES buffer).

Fig. S17. Quantum yields of photodimerizations of **Ba/Yb** duplexes (bar graph) and energy gaps of HOMO or LUMO (line graphs). The energy gaps are displayed in absolute value and the axis is inverted. Note that, **B** should be protonated at pH 5 and hence, **Ba/S_Db** (\mathbf{H}^+) showed similar reactivity with **Za/S_Db** (\mathbf{H}^+).

Fig. S18. Quantum yields of photodimerizations of S_Da/Yb (H^+) duplexes (bar graph) and energy gaps of HOMO or LUMO (line graphs). The energy gaps are displayed in absolute value and the axis is inverted. Note that, **B** should be protonated at pH 5 and hence, S_Da/Bb (H^+) showed similar reactivity with S_Da/Zb (H^+).

Fig. S19. HPLC chromatograms of S_Aa/Bb before and after 300 min photo-irradiation (340 nm).

Fig. S20. HPLC chromatograms of S_Aa/Zb before and after 180 min UV irradiation (340 nm).

Fig. S21. Schematic energy diagram of the (a) **A** excited state and (b) **B** excited state in A/B hetero dimer aggregate. (c) Electron transfer from **A** (higher energy level) to **B** (lower energy level) may result the same radical ion pair state.

¹H-NMR of compound 1 (S)

¹³C-NMR of compound 1 (S)

S

¹H-NMR of compound 1 (**S**_{CN})

0

¹³C-NMR of compound 1 (S_{cN})

0

¹H-NMR of compound 1 (S_A)

¹³C-NMR of compound 1 (**S**_A)

¹H-NMR of compound 3 (**S**_{CN})

,́н

NO2

¹H-NMR of compound 4 (S)

¹H-NMR of compound 4 (**S**_{CN})

¹³C-NMR of compound 4 (ScN)

¹H-NMR of compound 4 (S_A)

¹³C-NMR of compound 4 (S_A)

¹H-NMR of compound 4 (S_D)

¹³C-NMR of compound 4 (**S**_D)

