Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Formamidine hydrochloride as an amino surrogate: I₂-catalyzed oxidative amidation of aryl methyl ketones leading to free (N-H) α-ketoamides

Shan Liu, Qinghe Gao, Xia Wu, Jingjing Zhang, Kerong Ding and Anxin Wu*

Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, People's Republic of China

E-mail: chwuax@mail.ccnu.edu.cn

Table of Contents	
1. General Information	
2. General Procedures for the Synthesis of 3	
3. General Procedures for the Synthesis of 1s, 1t	
4. Characterization Data of Compounds	
5. ¹ H and ¹³ C NMR Spectra of Compounds	

1. General Information

All substrates and reagents were commercially available and used without further purification. TLC analysis was performed using pre-coated glass plates. Column chromatography was performed using silica gel (200-300 mesh). IR spectra were recorded on a Perkin-Elmer PE-983 infrared spectrometer as KBr pellets with absorption in cm⁻¹. ¹H spectra were recorded in CDCl₃ or DMSO-*d*₆ on 400/600 MHz NMR spectrometers and resonances (δ) are given in parts per million relative to tetramethylsilane. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz) and integration. ¹³C spectra were recorded in CDCl₃ or DMSO-*d*₆ on 100/150 MHz NMR spectrometers and resonances (δ) are given in ppm. HRMS were obtained on a Bruker 7-tesla FT-ICR MS equipped with an electrospray source. Melting points were determined using XT-4 apparatus and not corrected.

2. General Procedures for the Synthesis of 3

A mixture of acetophenone **1a** (1.0 mmol), formamidine hydrochloride **2** (1.0 mmol), iodine (0.8 mmol) in DMSO (2 mL) was stirred at 110 °C for 11 h till almost completed conversion of the substrates by TLC analysis, and added 50 mL water to the mixture, then extracted with EtOAc three times (3×50 mL). The extract was washed with 10% Na₂S₂O₃ solution (w/w), dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/EtOAc = 5:1) to afford the desired product **3a** as a yellow solid (131.3 mg, 88% yield).

3. General Procedures for the Synthesis of 1s, 1t

A mixture of **1r** (3.0 mmol), KOH (15.0 mmol), in acetone (5 mL) with five drops of water was stirred in the ice-water bath for 0.5 h, then methyl iodide (45.0 mmol) or benzyl bromide (12.0 mmol) in acetone (2 mL) was dropped into the mixture within 30 min. Ten minutes later, the mixture was stirred at room temperature for 3 h till almost completed conversion of the substrates by TLC analysis, then removed the acetone in vacuo, and added 50 mL water to the mixture, extracted with EtOAc three times (3 × 50 mL), dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (eluent: petroleum ether/EtOAc = 3:1) to afford the product **1s** or **1t**.

1-(1-methyl-1H-indol-3-yl)ethanone (1s)

¹H NMR (600 MHz, CDCl₃) 8.37-8.36 (m, 1H), 7.64 (s, 1H), 7.30 (s, 3H), 3.78 (s, 3H), 2.48 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 192.9, 137.3, 135.8, 126.1, 123.2, 122.4 (x 2), 116.7, 109.5, 33.4, 27.5.

1-(1-benzyl-1H-indol-3-yl)ethanone (1t)

¹H NMR (600 MHz, CDCl₃) δ 8.40 (d, *J* = 7.8 Hz, 1H), 7.74 (s, 1H), 7.34-7.25 (m, 6H), 7.14 (d, *J* = 7.2 Hz, 2H), 5.32 (s, 2H), 2.50 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 193.1, 137.0, 135.7, 135.0, 129.0, 128.1, 126.9, 126.3, 123.4, 122.6 (x 2), 117.4, 110.1, 50.6, 27.6.

4. Characterization Data of Compounds 2-oxo-2-phenylacetamide (3a) ^[1]

Yield 88%; Yellow solid; mp 69-71 °C; IR (KBr): 3431, 3209, 1663, 1592, 1577, 1231; ¹H NMR (600 MHz, CDCl₃) δ 8.30 (d, *J* = 7.8 Hz, 2H), 7.64 (t, *J* = 7.2 Hz, 1H), 7.50 (t, *J* = 7.2 Hz, 2H), 7.05 (br, 1H), 6.32 (br, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 187.6, 164.4, 134.4, 132.8, 130.9, 128.5; MS (EI): m/z 150.09 (M + 1, 0.39%), 149.15 (M, 5.70), 105.05 (100).

2-oxo-2-(p-tolyl)acetamide (3b)^[1]

Yield 81%; White solid; mp 131-133 °C; IR (KBr): 3403, 3199, 1686, 1636, 1603, 1237; ¹H NMR (600 MHz, CDCl₃) δ 8.21 (d, *J* = 7.8 Hz, 2H), 7.28 (d, *J* = 7.8 Hz, 2H), 7.10 (br, 1H), 6.57 (br, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.0, 164.7, 145.7, 131.2, 130.4, 129.3, 21.8; MS (EI): m/z 164.20 (M + 1, 0.18%), 163.16 (M, 5.53), 119.10 (100).

2-(4-methoxyphenyl)-2-oxoacetamide (3c)^[1]

Yield 89%; Yellow solid; mp 145-147 °C; IR (KBr): 3458, 3198, 1707, 1650, 1604, 1566, 1245, 1169; ¹H NMR (600 MHz, DMSO- d_6) δ 8.27 (br, 1H), 7.97 (d, J = 9.0 Hz, 2H), 7.92 (br, 1H), 7.10 (d, J = 8.4 Hz, 2H), 3.86 (s, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ 189.3, 167.6, 164.2, 132.3, 125.6, 114.4, 55.8; MS (EI): m/z 180.18 (M + 1, 1.04%), 179.25 (M, 8.76), 135.15 (100). **2-(3-methoxyphenyl)-2-oxoacetamide (3d)**

ÓМе

Yield 83%; Yellow solid; mp 96-97 °C; IR (KBr): 3422, 3172, 1707, 1654, 1592, 1263; ¹H NMR (600 MHz, DMSO- d_6) δ 8.34 (br, 1H), 8.00 (br, 1H), 7.56 (d, J = 7.2 Hz, 1H), 7.51 (t, J = 7.8 Hz, 1H), 7.45 (s, 1H), 7.30 (d, J = 8.4 Hz, 1H), 3.82 (s, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ 190.6, 167.2, 159.4, 134.1, 130.3, 122.6, 120.7, 113.5, 55.4; HRMS (ESI): m/z [M + Na]⁺ calcd for C₉H₉NNaO₃: 202.0475; found: 202.0476.

2-(2-methoxyphenyl)-2-oxoacetamide (3e)

Yield 78%; Yellow solid; mp 120-121 °C; IR (KBr): 3411, 3181, 1696, 1673, 1651, 1599, 1293; ¹H NMR (600 MHz, DMSO- d_6) δ 8.02 (br, 1H), 7.64 (br, 1H), 7.61 (t, J = 7.2 Hz, 2H), 7.18 (d, J= 8.4 Hz, 1H), 7.09-7.07 (m, 1H), 3.80 (s, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ 191.7, 167.8, 159.5, 135.2, 130.3, 124.1, 120.8, 112.8, 56.1; HRMS (ESI): m/z [M + Na]⁺ calcd for C₉H₉NNaO₃: 202.0475; found: 202.0477.

2-(4-ethoxyphenyl)-2-oxoacetamide (3f)

Yield 84%; Yellow solid; mp 111-113 °C; IR (KBr): 3396, 3312, 3257, 1684, 1656, 1600, 1566; ¹H NMR (600 MHz, DMSO- d_6) δ 8.26 (br, 1H), 7.96 (d, J = 8.4 Hz, 2H), 7.92 (br, 1H), 7.08 (d, J = 8.4 Hz, 2H), 4.13 (q, J = 6.6 Hz, 2H), 1.34 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ 189.3, 167.6, 163.5, 132.3, 125.5, 114.7, 63.8, 14.5; HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₀H₁₁NNaO₃: 216.0631; found: 216.0633.

2-(benzo[d][1,3]dioxol-5-yl)-2-oxoacetamide (3g)

Yield 76%; Yellow solid; mp 174-176 °C; IR (KBr): 3426, 3199, 1707, 1648, 1591, 1256; ¹H NMR (400 MHz, DMSO- d_6) δ 8.26 (br, 1H), 7.91 (br, 1H), 7.64-7.62 (m, 1H), 7.41 (s, 1H), 7.09 (d, J = 8.4 Hz, 1H), 6.17 (s, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 188.9, 167.3, 152.7, 148.1, 127.5, 127.3, 108.4, 107.8, 102.4; HRMS (ESI): m/z [M + Na]⁺ calcd for C₉H₇NNaO₄: 216.0267; found: 216.0270.

2-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-oxoacetamide (3h)

Yield 86%; Yellow solid; mp 158-161 °C; IR (KBr): 3444, 3201, 1691, 1651, 1587, 1292, 1258; ¹H NMR (600 MHz, DMSO- d_6) δ 8.26 (br, 1H), 7.91 (br, 1H), 7.53-7.51 (m, 1H), 7.46 (s, 1H), 7.03 (d, J = 8.4 Hz, 1H), 4.36-4.35 (m, 2H), 4.30-4.29 (m, 2H); ¹³C NMR (150 MHz, DMSO- d_6) δ 189.1, 167.3, 149.1, 143.4, 126.2, 124.1, 118.4, 117.6, 64.8, 64.0; HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₀H₉NNaO₄: 230.0424; found: 230.0426.

2-(4-nitrophenyl)-2-oxoacetamide (3i)

Yield 69%; Yellow solid; mp 157-159 °C; IR (KBr): 3447, 3223, 1713, 1686, 1524, 1349, 1222; ¹H NMR (600 MHz, CDCl₃) δ 8.52 (d, *J* = 8.4 Hz, 2H), 8.33 (d, *J* = 9.0 Hz, 2H), 7.08 (br, 1H), 6.15 (br, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 189.0, 165.7, 150.4, 137.6, 131.2, 123.9; HRMS (ESI): m/z [M + Na]⁺ calcd for C₈H₆N₂NaO₄: 217.0220; found: 217.0218. 2-([1,1'-biphenyl]-4-yl)-2-oxoacetamide (3j)

Yield 82%; White solid; mp 177-179 °C; IR (KBr): 3426, 1662, 1599, 1405, 1241, 751; ¹H NMR (600 MHz, DMSO- d_6) δ 8.36 (br, 1H), 8.07 (d, J = 7.8 Hz, 2H), 8.03 (br, 1H), 7.90 (d, J = 8.4 Hz, 2H), 7.77 (d, J = 7.8 Hz, 2H), 7.53-7.51 (m, 2H), 7.46-7.44 (m, 1H); ¹³C NMR (150 MHz, DMSO- d_6) δ 190.3, 167.2, 145.7, 138.7, 131.6, 130.4, 129.2, 128.7, 127.1 (x 2); HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₄H₁₁NNaO₂: 248.0682; found: 248.0683.

2-(4-fluorophenyl)-2-oxoacetamide (3k)^[1]

Yield 87%; Yellow solid; mp 150-151 °C; IR (KBr): 3454, 3200, 1717, 1668, 1580, 1229; ¹H NMR (600 MHz, DMSO- d_6) δ 8.35 (br, 1H), 8.09-8.07 (m, 2H), 8.04 (br, 1H), 7.42-7.39 (m, 2H); ¹³C NMR (150 MHz, DMSO- d_6) δ 189.1, 166.8, 166.6, 164.9, 132.9, 129.6, 116.3, 116.1; MS (EI): m/z 168.16 (M + 1, 0.54%), 167.19 (M, 7.55), 123.07 (100).

2-(4-chlorophenyl)-2-oxoacetamide (3l)

Yield 86%; Yellow solid; mp 130-131 °C; IR (KBr): 3433, 3205, 1713, 1664, 1579, 1234; ¹H NMR (600 MHz, CDCl₃) δ 8.30 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 9.0 Hz, 2H), 7.07 (br, 1H), 6.31 (br, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 189.4, 166.5, 139.5, 131.6, 131.5, 129.2; HRMS (ESI): m/z [M + Na]⁺ calcd for C₈H₆ClNNaO₂: 205.9979; found: 205.9978.

2-(4-bromophenyl)-2-oxoacetamide (3m)^[1]

Yield 85%; Yellow solid; mp 123-125 °C; IR (KBr): 3422, 3222, 1687, 1659, 1580, 1230; ¹H NMR (600 MHz, CDCl₃) δ 8.20 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 7.8 Hz, 2H), 7.09 (br, 1H), 6.41 (br, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 186.1, 163.5, 132.6, 131.9, 131.7, 130.3; MS (EI): m/z 229.20 (M + 1, 6.38%), 228.63 (M, 1.18), 183.06 (100).

2-(3,4-dichlorophenyl)-2-oxoacetamide (3n)

Yield 67%; Yellow solid; mp 188-189 °C; IR (KBr): 3453, 3210, 1709, 1668, 1222; ¹H NMR (600

MHz, DMSO-*d*₆) δ 8.39 (br, 1H), 8.17 (s, 1H), 8.11 (br, 1H), 7.96 (d, *J* = 8.4 Hz, 1H), 7.85 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 187.8, 165.5, 137.3, 133.1, 131.9, 131.4, 131.3, 129.9; HRMS (ESI): m/z [M + Na]⁺ calcd for C₈H₅Cl₂NNaO₂: 239.9590; found: 239.9590. **2-(naphthalen-2-yl)-2-oxoacetamide (30)**^[1]

Yield 80%; Pink solid; mp 194-196 °C; IR (KBr): 3409, 3208, 1694, 1665, 1595, 1222; ¹H NMR (600 MHz, DMSO- d_6) δ 8.67 (s, 1H), 8.45 (br, 1H), 8.17 (d, J = 7.8 Hz, 1H), 8.10 (br, 1H), 8.07 (d, J = 8.4 Hz, 1H), 8.02-7.99 (m, 2H), 7.72-7.69 (m, 1H), 7.65-7.62 (m, 1H); ¹³C NMR (150 MHz, DMSO- d_6) δ 190.9, 167.3, 135.6, 132.8, 132.0, 130.1, 129.9, 129.5, 128.8, 127.9, 127.3, 123.9; MS (EI): m/z 200.23 (M + 1, 2.71%), 199.25 (M, 20.83), 155.15 (100).

2-(naphthalen-1-yl)-2-oxoacetamide (3p)

Yield 58%; Yellow solid; mp 159-160 °C; IR (KBr): 3413, 3219, 1716, 1677, 1241; ¹H NMR (600 MHz, DMSO- d_6) δ 8.81 (d, J = 8.4 Hz, 1H), 8.45 (br, 1H), 8.27 (d, J = 8.4 Hz, 1H), 8.08 (br, 1H), 8.08-8.07 (m, 2H), 7.73-7.63 (m, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ 193.7, 167.6, 134.8, 133.5, 133.3 (1), 133.2 (7), 130.3, 128.9 (4), 128.8 (9), 128.8, 126.8, 124.9; HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₂H₉NNaO₂: 222.0526; found: 222.0529.

2-oxo-2-(thiophen-2-yl)acetamide (3q)

Yield 43%; Brown solid; mp 83-85 °C; IR (KBr): 3443, 2923, 1707, 1648, 1410, 1348, 1244; ¹H NMR (600 MHz, DMSO- d_6) δ 8.31 (br, 1H), 8.16 (d, J = 4.8 Hz, 1H), 8.13 (d, J = 4.2 Hz, 1H), 7.99 (br, 1H), 7.29-7.28 (m, 1H); ¹³C NMR (150 MHz, DMSO- d_6) δ 180.6, 164.4, 138.8, 137.4, 137.3, 128.8; HRMS (ESI): m/z [M + Na]⁺ calcd for C₆H₅NNaO₂S: 177.9933; found: 177.9932. **2-(1H-indol-3-yl)-2-oxoacetamide (3r)**

Yield 79%; Brown solid; mp 249-251 °C; IR (KBr): 3396, 3258, 1667, 1615, 1598, 1580, 1408; ¹H NMR (600 MHz, DMSO- d_6) δ 12.2 (br, 1H), 8.71 (d, J = 3.6 Hz, 1H), 8.24-8.23 (m, 1H), 8.10 (br, 1H), 7.73 (br, 1H), 7.54-7.53 (m, 1H), 7.27-7.24 (m, 2H); ¹³C NMR (150 MHz, DMSO- d_6) δ 183.0, 166.1, 136.4, 126.2, 123.5, 122.6, 121.4, 121.3, 112.6, 112.2; HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₀H₈N₂NaO₂: 211.0478; found: 211.0481.

2-(1-methyl-1H-indol-3-yl)-2-oxoacetamide (3s)

Yield 73%; Brown solid; mp 178-180 °C; IR (KBr): 3373, 3220, 3056, 2908, 1705, 1626, 1591, 1519, 1347; ¹H NMR (600 MHz, DMSO- d_6) δ 7.86 (s, 1H), 7.36 (d, J = 7.8 Hz, 1H), 7.23 (br, 1H), 6.87 (br, 1H), 6.69 (d, J = 7.8 Hz, 1H), 6.45-6.40 (m, 2H), 3.02 (s, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ 182.4, 166.0, 141.7, 137.0, 126.7, 123.4, 122.9, 121.5, 121.3, 111.0, 33.3; HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₁H₁₀N₂NaO₂: 225.0635; found: 225.0638.

2-(1-benzyl-1H-indol-3-yl)-2-oxoacetamide (3t)

Yield 71%; Brown solid; mp 184-186 °C; IR (KBr): 3392, 3191, 3128, 2922, 2852, 1697, 1624, 1593, 1515, 1355, 1175; ¹H NMR (600 MHz, DMSO- d_6) δ 8.93 (s, 1H), 8.26-8.25 (m, 1H), 8.14 (br, 1H), 7.78 (br, 1H), 7.59-7.57 (m, 1H), 7.34 (t, J = 7.2 Hz, 2H), 7.29-7.27 (m, 5H), 5.59 (s, 2H); ¹³C NMR (150 MHz, DMSO- d_6) δ 182.7, 165.9, 136.8, 136.3, 129.3, 128.8, 128.7, 128.3, 127.8, 127.4, 127.3, 126.9, 123.5, 111.5, 49.8; HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₇H₁₄N₂NaO₂: 301.0948; found: 301.0950.

N-(1-hydroxy-2-oxo-2-phenylethyl)formamide (A')

¹H NMR (600 MHz, DMSO-*d*₆) δ 9.00 (d, *J* = 8.4 Hz, 1H), 8.12 (s, 1H), 8.00 (d, *J* = 7.2 Hz, 2H), 7.67-7.64 (m, 1H), 7.54 (t, *J* = 7.8 Hz, 2H), 6.77 (d, *J* = 7.2 Hz, 1H), 6.43-6.40 (m, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 194.6, 161.2, 133.9, 133.8, 128.9, 128.8, 70.9; HRMS (ESI): m/z [M + Na]⁺ calcd for C₉H₉NNaO₃: 202.0475; found: 202.0476.

N-formyl-2-oxo-2-phenylacetamide (B)

¹H NMR (600 MHz, DMSO-*d*₆) δ 11.99 (s, 1H), 9.05 (s, 1H), 8.00 (d, *J* = 7.8 Hz, 2H), 7.78 (t, *J* = 7.2 Hz, 1H), 7.62 (t, *J* = 7.8 Hz, 2H); HRMS (ESI): m/z [M + Na]⁺ calcd for C₉H₇NNaO₃: 200.0318; found: 200.0317.

6-(4-methoxyphenyl)-3-thioxo-3,4-dihydro-1,2,4-triazin-5(2H)-one (4)^[2]

Yield 85%; Yellow solid; ¹H NMR (600 MHz, DMSO-*d*₆) δ 13.61 (br, 1H), 13.20 (br, 1H), 7.92 (d, *J* = 9.0 Hz, 2H), 7.01 (d, *J* = 9.0 Hz, 2H), 3.80 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 172.7, 160.8, 153.0, 145.2, 129.7, 124.1, 113.7, 55.4; MS (EI): m/z 237.08 (M + 2, 5.28%), 236.02 (M + 1, 12.73), 235.02 (100).

Reference:

- (1) Z. Zhang, J. Su, Z. Zha and Z. Wang, Chem. Commun., 2013, 49, 8982.
- (2) F. M. Adam, A. J. Burton, K. S. Cardwell, R. A. Cox, R. A. Henson, K. Mills, J. C. Prodger,
- M. B. Schilling and D. T. Tape, *Tetrahedron Lett.*, 2003, 44, 5657.

5. ¹H and ¹³C NMR Spectra of Compounds

S11

S12

80 70

60 50

40 30

20 10 (

10 200 190 180 170 160 150 140 130 120 110 100 90

600 MHz DMSO-d₆

600 MHz CDCl3

S21

600 MHz CDCl3

-0.000

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (

600 MHz DMSO- d_6

Mass Spectrum SmartFormula Report							
Analysis Info				Acquisition Date	11/23/2014 11:16:39 AM		
Analysis Name D:\Data\20141123\63136-B 000002.d							
Method 20140812			Operator				
Sample Name				Instrument	apex-Ultra		
Comment							
Acquisition Para	meter						
Polarity	Positive	Source	ESI	No. of Laser Shots	20		
Averaged Scans	2	No. of Cell Fills	1	Laser Power	51.0 %		
Broadband Low Mas	ss 100.3 m/z	End Plate	3500.0 V	MALDI Plate	300.0 V		
Broadband High Ma	ss 1200.0 m/z	Capillary Entrance	4000.0 V	Imaging Spot Diamete	r 2000.0 µm		
Acquisition Mode	Single MS	Skimmer 1	20.0 V		on the second second second second second		
Pulse Program	basic	Drying Gas Temperature	180.0 °C	Calibration Date	Sat Nov 22 10:33:48 2014		
Source Accumulatio	n 0.0 sec	Drving Gas Flow Rate	4.0 L/min	Data Acquisition Size	131072		
Ion Accumulation Til	me 0.1 sec	Nebulizer Gas Flow Rate	1.0 L/min	Apodization	Sine-Bell Multiplication		
Flight Time to Acq. 0	Cell 0.0 sec			9.9.4			

