Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information For:

Luminescent organogels based on triphenylamine functionalized

β-diketones and their difluoroboron complexes

Chong Qian, Mingyang Liu, Guanghui Hong, Pengchong Xue, Peng Gong and Ran Lu*

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China

Tel: +86-431-88499179; E-Mail: luran@mail.jlu.edu.cn

Fig. S1. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 1.

Fig. S2. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 1.

Fig. S3. MALDI/TOF MS spectrum of compound 1.

Fig. S4. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2.

Fig. S5. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 2.

Fig. S6. MALDI/TOF MS spectrum of 2.

Fig. S7. ¹H NMR (400 MHz, CDCl₃) spectrum of compound **3**.

Fig. S8. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 3.

Fig. S11. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 1B.

Fig. S12. MALDI/TOF MS spectrum of 1B.

Fig. S13. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2B.

Fig. S14. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 2B.

Fig. S15. MALDI/TOF MS spectrum of 2B.

Fig. S16. ¹H NMR (400 MHz, CDCl₃) spectrum of compound **3B**.

Fig. S17. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound **3B**.

Fig. S18. MALDI/TOF MS spectrum of 3B.

	in toluene			in solid state		
Compound	$\lambda_{abs}^{max}/$ nm (ϵ_{max} ^a)	$\lambda_{em}/\ nm$	${\it I} \!$	λ_{em}^{c}/nm	${\it I} \!$	
1	408 (4.22)	462	0.53	498	0.43	
2	427 (6.40)	460	0.57	502	0.11	
3	422 (10.28)	454	0.54	517	0.10	
1 B	467 (6.21)	547	0.60	616	0.25	
2 B	490 (8.99)	525	0.82	609	0.14	
3B	479 (15.62)	510	0.76	604	0.66	

Table S1. Photophysical data of ligands 1-3 and complexes 1B-3B.

^a M⁻¹ cm⁻¹, $\times 10^4$.

^b Determined by a standard method.^[1] For **1-3**, diphenylanthracene ($\Phi_f = 0.85$, $\lambda_{ex} = 390$ nm, in benzene) was used as reference.^[2] For **1B-3B**, fluorescein ($\Phi_f = 0.88$, $\lambda_{ex} = 460$ nm, in 0.1 N NaOH) was used as reference.^[3]

 $^{\rm c}$ The films were obtained by dropping the solutions in dichloromethane (1.0 \times 10 $^{\rm 4}$ M) on quartz slide.

^d Measured using an integrating sphere.

Compound	Solvents	$\lambda_{abs}^{max}/nm(\epsilon_{max}^{a})$	λ_{em}/nm	stokes shift ^b / nm	fwhm/ nm	Φ_{f}
1	Toluene	408 (4.22)	457	49	52	0.53
	1,4-Dioxane	408 (4.51)	475	67	81	0.77
	DCM	412 (4.20)	523	111	129	0.57
	DMF	411 (3.62)	539	128	145	0.22
2	Toluene	427 (6.47)	460	33	68	0.57
	1,4-Dioxane	425 (6.40)	468	43	76	0.61
	DCM	430 (6.07)	498	68	106	0.59
	DMF	423 (5.52)	511	78	119	0.37
3	Toluene	422 (10.28)	454	32	53	0.54
	1,4-Dioxane	423 (10.19)	463	40	62	0.52
	DCM	426 (10.04)	488	63	88	0.59
	DMF	429 (7.50)	507	78	103	0.50
^a M ⁻¹ cm ⁻	$^{1}, \times 10^{4}.$					

 Table S2. Photophysical data of 1-3 in different solvents.

 b Calculated from the difference of λ_{em} and $^{\lambda_{abs}^{max}}.$

^c Fluorescence quantum yield determined by a standard method with diphenylanthracene in benzene ($\Phi_{\rm f}{=}\,0.85,\,\lambda_{ex}{=}\,390$ nm) as reference.

Compound	Solvents	$\lambda_{abs}^{max}/$ nm (ϵ_{max} ^a	λ_{em}/nm	stokes shift ^b / nm	fwhm/ nm	${\it \Phi_{\! f}}^{ m c}$
1 B	Toluene	467 (6.21)	547	80	83	0.60
	1,4-Dioxane	466 (6.25)	576	110	112	0.40
	DCM	473 (6.35)	640	167	176	0.02
	DMF	473 (6.70)	-	-	-	-
2B	Toluene	490 (8.99)	525	35	44	0.82
	1,4-Dioxane	491 (9.73)	542	51	78	0.77
	DCM	502 (9.60)	571	69	107	0.41
	DMF	506 (9.23)	616	110	152	0.02
3B	Toluene	479 (15.62)	510	31	42	0.76
	1,4-Dioxane	481 (15.76)	526	45	52	0.71
	DCM	490 (15.28)	550	60	75	0.58
	DMF	498 (15.09)	590	92	96	0.18

 Table S3. Photophysical data of 1B-3B in different solvents.

^a M⁻¹ cm⁻¹, \times 10⁴.

 b Calculated from the difference of λ_{em} and $^{\lambda_{abs}^{max}}.$

^c Fluorescence quantum yield determined by a standard method with Fluorescein in 0.1 N NaOH (Φ_f = 0.88, λ_{ex} = 460 nm) as reference.

Fig. S19. Normalized UV-vis absorption (a, c and e) and fluorescence emission spectra (b, d and f, $\lambda_{ex} = 400$ nm) of 1 (a,b), 2 (c,d) and 3 (e,f) in different solvents $(2.0 \times 10^{-6} \text{ M}).$

Fig. S20. Normalized UV-vis absorption (a, c and e) and fluorescence emission spectra (b, d and f, λ_{ex} = 450 nm) of 1B (a,b), 2B (c,d) and 3B (e,f) in different solvents (2.0 × 10⁻⁶ M).

Fig. S21. The energy levels and molecular orbital surfaces in the optimized groundstate structure of β -diketonate 1-3 and complexes 1B-3B, in which hexadecyl groups were omitted.

Fig. S22. Illustration of the dihedral angle between two β -diketone units of 2 in optimized structure.

Fig. S23. Illustration of the dihedral angle between two β -diketone units of 3 in optimized structure.

Fig. S24. Illustration of the dihedral angle between two β -diketone units of 2B in optimized structure.

Fig. S25. Illustration of the dihedral angle between two β -diketone units of **3B** in optimized structure.

Fig. S26. The photos of the solutions and their corresponding gels of a) 1 in DMSO; b) 3 in DMF; c) 1B in CH₃COOH/H₂O = 10/1; d) 2B in DMSO; e) 3B in heptane.

Fig. S27. SEM images of the xerogel 3 obtained from DMF.

Fig. S28. AFM image of the gel of 3 in DMF.

Fig. S29. CD spectra of gel formed from 3 in DMF (8.0 mg/mL).

Fig. S30. Small-angle X-ray diffraction patterns of the xerogels of 1 in DMSO, 1B in $CH_3COOH/H_2O = 10/1$, 2B in DMSO, 3 in DMF and 3B in heptane (from top to bottom).

Fig. S31. Wide-angle X-ray diffraction patterns of the xerogels of **1** in DMSO, **1B** in CH3COOH/H₂O = 10/1, **2B** in DMSO, **3** in DMF and **3B** in heptane (from top to bottom).

Fig. S32. Optimized geometry structure of 1, 1B, 2B and 3 by DFT calculation.

Fig. S33. Schematic depiction for proposed self-assembled structure from 3 of xerogels.

Refrences

[1] A. D'Aléo, D. Gachet, V. Heresanu, M. Giorgi and F. Fages. *Chem. Eur. J.*, 2012, **18**, 12764 -12772;

[2] H. P. Zhou, X. Zhao, T. H. Huang, R. Lu, H. Z. Zhang, X. H. Qi, P. C. Xue, X. L. Liu and X. F. Zhang. *Org. Biomol. Chem.*, 2011, **9**, 1600-1607;

[3] K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi and S. Tobita. *Phys. Chem. Chem. Phys.*, 2009, **11**, 9850-9860.