Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Organocatalytic alkynylation of heterocyclic compounds using hypervalent iodine reagent

M. Kamlar, I. Císařová^b and J. Veselý^a

^{*a*} Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 43 Praha 2, Czech Republic, e-mail: jxvesely@natur.cuni.cz, fax: +42-221951226.

^b Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 43, Praha 2, Czech Republic.

1	G	ENERAL PROCEDURE	2
2	PI	REPARATION OF REAGENTS AND SUBSTRATES	2
	2.1	PREPARATION OF ALKYNYL HYPERVALENT IODINE COMPOUDS	2
	2.2	Preparation of pyrazolones (7)	4
	2.3	1,3-DIBENZYL-1,3-DIHYDROINDOL-2-ONE (9)	5
	2.4	Preparation of benzylated N-Phenylrhodanine (11)	6
	2.5	Preparation of 4-Benzyl-2-phenyloxazol-5(4H)-one (12)	6
	2.6	ORGANOCATALYTIC ALKYNYLATION	7
	2.7 ONE	PREPARATION OF 4-(1-(4-BROMOBENZYL)-1H-1,2,3-TRIAZOL-4-YL)-3-METHYL-1-PHENYL-1,4-DIHYDRO-1H-PYRAZO)L-5-
	2.8	PREPARATION OF 4-BENZYL-3-METHYL-1-PHENYL-4-(PHENYLETHYNYL)-1,4-DIHYDRO-3H-PYRAZOL-5-ONE	10
3	X-	-RAY OF COMPOUND 18	12
4	D	ETECTION OF EBX USING LOW TEMPERATURE ¹ H NMR EXPERIMENT	14
5	N	MR SPECTRA	15

1 General procedure

Chemicals and solvents were either purchased (puriss p.A.) from commercial suppliers or purified by standard techniques. For thin-layer chromatography (TLC), silica gel plates Merck 60 F254 were used, and compounds were visualized by irradiation with UV light and/or by treatment with a solution of phosphomolybdenic acid (25 g), $Ce(SO_4)_2 \cdot H_2O$ (10 g), conc. H_2SO_4 (60 mL), and H_2O (940 mL) followed by heating or by treatment with a solution of p-anisaldehyde (23 mL), conc. H_2SO_4 (35 mL), acetic acid (10 mL), and ethanol (900 mL) followed by heating.

Flash chromatography was performed by using silica gel Merck 60 (particle size 0.040–0.063 mm). ¹H and ¹³C NMR spectra were measured on FT-NMR spectrometer Bruker AVANCE III 600 MHz. Chemical shifts are given in ppm relative and coupling constants J are given in Hz. The spectra were recorded in CDCl₃ as solvent at room temperature and served as internal standard ($\delta = 7.26$ ppm) for ¹H NMR and ($\delta = 77.0$ ppm) for ¹³C NMR. IR DRIFT spectras were recorded with Nicolet AVATAR 370 FT-IR in cm⁻¹. Chiral HPLC was carried out using a LC20AD Shimadzu liquid chromatograph with SPD-M20A diode array detector with columns Daicel Chiralpak[®] IA, Daicel Chiralpak[®] IB, Daicel Chiralpak[®] AD. High-resolution mass spectroscopic data were obtained at Institute of Organic Chemistry and Biochemistry, Academy of Science, v.v.i.

2 Preparation of Reagents and Substrates

2.1 Preparation of alkynyl hypervalent iodine compouds

1-hydroxy- $1\lambda^3$ -benzo[d][1,2]iodaoxol-3(1H)-one (1)

Following the reported procedure¹, NaIO₄ (1.05 eq., 31 mmol, 6.7 g) and 2-iodobenzoic acid (1.00 eq., 30 mmol, 7.4 g) were suspended in 30% (w:w) aq. HOAc (45 mL). The mixture was vigorously stirred and refluxed for 4 h. The reaction mixture was then diluted with cold water (180 mL) and allowed to cool to r.t, protecting it from light. After 1 h, the crude product was filtered, the filter cake was washed with ice water (3x) and acetone (3x), dried on the air in the dark to affored the pure product **1** in 91% yield as white solid. NMR data fit with that published in the literature.

1-[(trimethylsilyl)ethynyl]-1,2-benziodoxol-3(1H)-one (3a)

¹ L. Kraszkiewicz, L. Skulski, Arkivoc, 2003, 6, 120.

According to a slight modified reported procedure², to a stirred solution of 2-iodosylbenzoic acid **2** (1 eq., 11.4 mmol, 3 g) in dry MeCN was added trimethylsilyl triflate (1.3 eq., 15 mmol, 2.8 mL). After stirring 15 min the bis(trimethylsilyl)acetylene (**2**) (1.1 eq., 12.5 mmol, 2.14 g) was added. The reaction mixture was stirred for next 20 min, and then pyridine (1.1 eq., 12.5 mmol, 1.2 mL) was added and the solvent was evaporated. The residual crude oil was washed with water, saturated solution of NaHCO₃. Organic layer was dried over MgSO₄, filtered and evaporated to afford a white solid, which was recrystallized from acetonitrile to get pure product **3a** (65 %).

Triethyl((trimethylsilyl)ethynyl)silane (4)

$$= SiMe_3 \qquad \xrightarrow{n'BuLi, Et_3SiCl} Me_3Si = SiEt_3$$

-78 °C to 0 °C 4

Following the reported procedure³, to a stirred solution of ethynyltrimethylsilane (1.0 eq., 30 mmol, 4.2 mL) in THF was dropped "BuLi (1.6M in hexane, 1 eq., 30 mmol, 18.70 mL) at -70°C. The reaction mixture was allowed to reach 0°C and stirred for 5 min a then cooled again to -70°C. Triethylsilyl chloride (1.0 eq., 30 mmol, 3.8 mL) was then added dropwise and reaction mixture was stirred overnight at RT. To a solution was poured saturated solution of NH₄Cl and organic layer was extracted with Et₂O (2x) and washed with brine (2x) and dried over MgSO₄ followed by filtration and evaporation to affored crude product 4, which was purrified by vacuum distillation (1 mbarr at 70°C) affording pure 4 in 65% yield.

Triisopropyl((trimethylsilyl)ethynyl)silane (5)

$$= SiMe_3 \qquad \xrightarrow{n'BuLi, i'PrSiCl} Me_3Si = Si'Pr_3$$

-78 °C to 0 °C 5

Following the reported procedure³, to a stirred solution of ethynyltrimethylsilane (1.0 eq., 30 mmol, 4.2 mL) in THF was dropped ^{*n*}BuLi (1.6M in hexane, 1 eq., 30 mmol, 18.70 mL) at -70°C. The reaction mixture was allowed to reach 0°C and stirred for 5 min a then cooled again to -70°C. Triisopropylsilyl chloride (1.0 eq., 30 mmol, 6.4 mL) was then added dropwise and reaction mixture was stirred overnight at RT. To a solution was poured saturated solution of NH₄Cl and organic layer was extracted with Et₂O (2x) and washed with brine (2x) and dried over MgSO₄ followed by filtration and evaporation to affored crude product **5**, which was purrified by vacuum distillation (1 mbarr at 70°C) affording pure **5** in 73% yield.

² V. V. Zhdankin , C. J. Kuehl , A. P. Krasutsky , J. T. Bolz and A. J. Simonsen, *J. Org. Chem.*, 1996, **61**, 6547-6551.

³ C. J. Helal, P. A. Magriotis and E. J. Corey, J. Am. Chem. Soc. 1996, 118, 10938-10939.

1-[(Triethylsilyl)ethynyl]-1,2-benziodoxol-3(1H)-one (3b)

According to a described reported procedure⁴, to a stirred solution of 2-iodosylbenzoic **1** acid (1 eq., 3 mmol, 792 mg) in dry MeCN was added trimethylsilyl triflate (1.1 eq., 3.3 mmol, 0.6 mL). After 15 minutes of stirring the triethyl((trimethylsilyl)ethynyl)silane **4** (1.1 eq., 3.3 mmol, 700 mg) was added. The reaction mixture was stirred for next 20 min, and then pyridine (1.1 eq., 3.3 mmol, 0.3 mL) was added and the solvent was evaporated. The residual crude oil was washed with water and saturated solution of NaHCO₃. Organic layer was dried over MgSO₄, filtered and evaporated affording a white, solid product **3b**, which was recrystallized from acetonitrile (59% yield).

1-[(Triisopropylsilyl)ethynyl]-1,2-benziodoxol-3(1H)-one (3c)

According to a slightly modified reported procedure¹, to a stirred solution of 2-iodosylbenzoic **1** acid (1 eq., 2.9 mmol, 766 mg) in dry MeCN was added trimethylsilyl triflate (1.1 eq., 3.2 mmol, 0.6 mL). After 15 minutes of stirring the triisopropyl((trimethylsilyl)ethynyl)silane **5** (1.1 eq., 3.2 mmol, 821 mg) was added. The reaction mixture was stirred for next 20 min, and then pyridine (1.1 eq., 3.2 mmol, 0.3 mL) was added and the solvent was evaporated. The residual crude oil was washed with water and saturated solution of NaHCO₃. Organic layer was dried over MgSO₄, filtered and evaporated affording a white, solid product **3c**, which was recrystallized from acetonitrile (70% yield). NMR data fit with data published in the literature.

2.2 Preparation of pyrazolones (7)

⁴ J. P. Brand, C. Chevalley, C.; R. Scopelliti, J. Waser, Chem. Eur. J., 2012, 18, 5655-5666.

Preparation of α -alkylated acetoacetate (6)

According a published procedure⁵, a mixture of acetoacetate (1.0 equiv) and anhydrous K_2CO_3 (1.3 equiv) in dry acetone was stirred under argon atmosphere for five minutes. Then, methyl iodide or corresopnding benzyl bromide (1.3 equiv) was added carefully. The reaction was refluxed overnight and after filtrartion and the solvent evaporation was the crude mixture purified by flash chromatography on silica gel with mixture of hexane/ethyl acetate affording corresponding pure compound **6**. NMR data fit with data published in the literature.

Preparation of corresonding pyrazolones (7)

According to a published procedure⁶, a mixture of alkylated acetoacetate (1eq.) and phenylhydrazine (1 eq.) was refluxed in EtOH until full conversion. The solvent was removed a residue was crystalized from Et_2O . Solid material was filtered affording corresponding product. NMR data fit with data published in the literature.

2.3 1,3-Dibenzyl-1,3-dihydroindol-2-one (9)

3-Benzylideneindolin-2-one (8). According to a published procedure⁷, to a solution of a oxindole (1 eq., 3.8 mmol, 0.5 g) in ethanol (30 mL) were added benzaldehyde (1.1 eq., 4.2 mmol, 0.43 mL) and piperidine (2 eq., 7.6 mmol, 0.75 mL). The solution was heated at 80 °C for 3 hours and then allowed to cool to room temperature. The precipitate was filtered, washed with ethanol and dried affording corresponding product **8** as a yellow solid (560 mg, 67% yield). The spectral data correspond with previously reported in the literature.

1,3-Dibenzylindolin-2-one (9). To a solution of **8** (2.5 mmol, 560 mg) in DMF (10 mL) was added a 60% dispersion of NaH (1.1 eq., 2.75 mmol, 110 mg) at room temperature. After stirring for 15 min, benzyl bromide (1.1 eq., 2.75 mmol, 0.33 mL) was added. After 3 h, was the reaction mixture quenched with H₂O and washed with MTBE. The organic layers was dried over Na₂SO₄, filtered and concentrated affording an orange residue (quant. yield), which was directly used without further purification.

To a orange residue in acetic acid were added zinc powder (excess) and concentrated HCl. The reaction was stirred overnight and then filtered through celite. The filter cake was washed with EtOAc and the filtrate was washed with solution of saturated aqueous NaHCO₃, than with brine and combined organic layers were dried over Na₂SO₄, filtered, and concentrated affording a brown-green residue. After column chromatography was the compound **9** obtained in 51% yield (400 mg) as yellowish solid. The spectral data correspond with data published in literature.

⁵ A. Rioz-Martínez, A. Cuetos, C. Rodriguéz, G. de Gonzalo, I. Lavandera, M. W. Fraaije, W. Gotor, *Angew. Chem. Int. Ed.*, 2011, **50**, 8387-8390.

⁶ H. Nakagawa, R. Ohyama, A. Kimata, T. Suzuki, N. Miyata, *Bioorg. Med. Chem. Lett.* 2006, 16, 5939-5942.

⁷ A. Huang, J. J. Kodanko, L. E. Overman, J. Am. Chem. Soc., 2004, **126**, 14043-14053.

2.4 Preparation of benzylated *N*-Phenylrhodanine (11)

5-Benzylidene-2-thioxothiazolidin-4-one (10). According to a desribed procedure⁸, to a solution N-phenylfhodanine (1eq., 2.4 mmol, 0.5 g) in toluene were added benzlaldehyde (1 eq., 2.4 mmol, 0.25 mL), pyperidine (0.3 eq., 0.07 mmol, 6 mg) and acetic acid (0.3 eq., 0.07 mmol, 4 mg). Reaction mixture was then refluxed overnight and after cooling to the room temperature precipitated the product 10 as vellow solid (700 mg, 90% vield). Spectral data correspondes with data published in the literature.⁹

5-benzyl-2-thioxothiazolidin-4-one (11). According to a modified procedure⁸, to a solution of 10 (2.36 mmol, 700 mg) and pyridine (23.6 mmol, 1.9 mL) in THF (10 mL) was dropwise added 2M solution of LiBH₄ in THF (5.19 mmol, 2.6 mL) at 0 °C. Full conversion was reached after 10 minutes of stirring at the same temperature. Reaction mixture was then quickly washed with 0.1M HCl and brine. Organic layer was then dried over Na₂SO₄, filltered, concentrated and purrified by column chromatography. Compound 11 was obtained as yellow solid in 56% yield.

¹H NMR (600 MHz, CDCl₃) δ = 7.52 – 7.44 (m, 3H), 7.39 – 7.32 (m, 5H), 7.30 (dd, J = 5.0, J' = 3.1 Hz, 2H), 7.00 (d, J = 4.0 Hz, 2H), 4.67 (dd, J = 8.6, J' = 3.9 Hz, 1H), 3.53 (dd, J = 14.0, J' = 3.8 Hz, 1H), 3.35 (dd, J = 14.0, J' = 8.6 Hz, 1H) ppm; ¹³C NMR (151 MHz, $CDCl_3$) $\delta = 200.27, 175.39, 135.10, 135.00, 129.68, 129.54$ (2C), 128.84 (2C), 128.27 (2C), 127.84, 53.27, 38.42 ppm; IR (KBr): $v = 3060, 2905, 1736, 1497, 1344, 1239, 1180 \text{ cm}^{-1}$; HRMS (ESI) m/z calcd for $C_{16}H_{13}NOS_2$ [M+Na]+ = 322.0331, found = 322.0331.

2.5 Preparation of 4-Benzyl-2-phenyloxazol-5(4H)-one (12)

According to desribed procedure¹⁰, to the solution of Phenyl alanine (1 eq., 0.5 g, 3.03 mmol) in toluene (10 mL) cooled to 0 °C was added benzovl chloride (2.0 eg., 6.06 mmol, 0.7 mL). After stirring for 2 h at the same temperature was the reaction mixture placed into a oilbath, pre-warmed to 80 °C. Et₃N (2.2 eq., 6.67 mmol, 0.93 mL) was added dropwise and the resulting mixture was stirred at 80 °C for 10 h. After cooling to room temperature was the reaction mixture washed twice with sat. aq. NH₄Cl, sat. aq. NaHCO₃ and once with brine.

⁸ R. G. Giles, N. J. Lewis, J. K. Quick, M. J. Sasse and J. W. J. Urguhart, L. Youssef, *Tetrahedron*, 2000, **56**,4531-4537.

⁹ K. A. Kandeel, A. M. Youssef, H. M. El-Bestawy and M. T. Omar, *Monatshefte für Chemie*, 2002, 133, 1211.

¹⁰ M. Weber, S. Jautze, W. Frey, R. Peters, Chem. Eur. J., 2012, 18,14792-14804.

After drying over MgSO₄, filtration and concentration was the residue purified by column chromatography yielding pure compound **12** as a yiellowish solid (162 mg, 21%). The spectral data correspond with data published in the literature.

2.6 Organocatalytic alkynylation

To a stirred solution of Et_3N (0.020 mmol) and heterocycle (7, 9, 11, 12) (0.10 mmol) in solvent (1 mL) was added TMS-EBX (3) (0.15 mmol) at room temperature. After completion of the reaction was the crude reaction mixture purified by column chromatography (Hex/EtOAc mixtures) affording corresponding compound 13-16.

4-Benzyl-4-ethynyl-3-methyl-1-phenyl-1,4-dihydro-1*H*-pyrazol-5-one

Yellowish oil, yield 82 %. ¹H NMR (600 MHz, CDCl₃): δ = 7.62-7.60 (m, 2H), 7.34-7.31 (m, 2H), 7.21–7.14 (m, 5H), 3.49 (d, *J* = 13.7 Hz, 1H), 3.27 (d, *J* = 13.7 Hz, 1H), 2.53 (s, 1H), 2.21 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃): δ = 170.21, 158.10, 137.34, 133.12, 129.41 (2C), 128.70 (2C), 128.42 (2C), 127.88, 125.47, 119.44 (2C), 77.27, 74.54, 54.52, 42.44, 14.49 ppm; IR (KBr): *v* = 3276, 3258, 3084, 3060, 3052, 3031, 2920, 2851, 1709, 1488, 1362, 1332, 764 cm⁻¹; HRMS (TOF) m/z calcd for C₁₉H₁₆N₂O [M+H]⁺ = 289.1341, found = 289.1339.

4-(4-Bromobenzyl)-4-ethynyl-3-methyl-1-phenyl-1,4-dihydro-1H-pyrazol-5-one

Yellowish oil, yield 70 %. ¹H NMR (600 MHz, CDCl₃): $\delta = 7.63-7.62$ (m, 2H), 7.36-7.33 (m, 4H), 7.19-7.17 (m, 1H), 7.10–7.04 (m, 2H), 3.42 (d, J = 13.7 Hz, 1H), 3.21 (d, J = 13.7 Hz, 1H), 2.54 (s, 1H), 2.21 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃): $\delta = 169.93$, 157.89, 137.15, 132.07, 131.58 (2C), 131.11 (2C), 128.80 (2C), 125.63, 122.06, 119.30 (2C), 76.79 (overlapped with residual solvent peak), 74.88, 54.18, 41.56, 14.50 ppm; IR (KBr): v = 3279, 3105, 3043, 2926, 1793, 1712, 1595, 1488, 1443, 1392, 1362, 1278, 1272 cm⁻¹; HRMS (TOF) m/z calcd for $C_{19}H_{16}N_2OBr [M+H]^+ = 367.0446$, found = 367.0443.

4-Ethynyl-3-methyl-4-(4-nitrobenzyl)-1-phenyl-1,4-dihydro-1H-pyrazol-5-one

Yellowish oil, yield 85 %. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.10$ (m, 2H), 7.64-7.62 (m, 2H), 7.37–7.32 (m, 4H), 7.19–7.16 (m, 1H), 3.54 (d, J = 13.6 Hz, 1H), 3.32 (d, J = 13.6 Hz, 1H), 2.58 (s, 1H),2.24 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃): $\delta = 169.45$, 157.52, 147.56, 140.45, 136.98, 130.56 (2C), 128.87 (2C), 125.77, 123.55 (2C), 119.02 (2C) 76.28, 75.47, 53.96, 41.42, 14.44 ppm; IR (KBr): v = 3282, 3105, 3075, 2920, 2854, 1715, 1592, 1521,1503, 1368, 1344, 1278 cm⁻¹; HRMS (TOF) m/z calcd for $C_{19}H_{15}N_{3}O_{3}$ [M+H]⁺ = 334.1192, found = 334.1203.

4-Ethynyl-3-methyl-4-(3-nitrobenzyl)-1-phenyl-1,4-dihydro-1H-pyrazol-5-one

Yellowish oil, yield 76 %. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.10 - 8.08$ (m, 2H), 7.64-7.62 (m, 2H), 7.54-7.62 (m, 1H), 7.41–7.39 (m, 1H), 7.35-7.32 (m, 2H), 7.18-7.16 (m, 1H), 3.54 (d, J = 13.7 Hz, 1H), 3.33 (d J = 13.7 Hz, 1H), 2.59 (s, 1H), 2.26 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃): $\delta = 169.49$, 157.58, 147.99, 136.99, 135.80, 134.99, 129.42, 128.84 (2C), 125.70, 124.43, 123.01, 119.06 (2C), 76.21, 75.55, 53.98, 41.37, 14.46 ppm; IR (KBr): v = 3264, 3111, 3069, 3037, 2122, 1975, 1709,

1595, 1535, 1503, 1488, 1398, 1362, 1347, 1308, 1272 cm⁻¹; HRMS (TOF) m/z calcd for $C_{19}H_{15}N_3O_3 [M+H]^+ = 334.1192$, found = 334.1187.

4-Ethynyl-3-methyl-4-(2-nitrobenzyl)-1-phenyl-1,4-dihydro-1H-pyrazol-5-one

Yellowish oil, yield 82 %. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.00-7.99$ (m, 1H), 7.75-7.74 (m, 2H), 7.57-7.53 (m, 2H), 7.46–7.43 (m, 1H), 7.38-7.35 (m, 2H), 7.19-7.17 (m, 1H), 3.76 (d, J = 13.7 Hz, 1H), 3.68 (d, J = 13.7 Hz, 1H), 2.51 (s, 1H), 2.19 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃): $\delta = 169.52$, 158.12.149.65, 137.36 133.68, 132.80, 128.96, 128.80 (2C), 128.24, 125.47, 125.10, 119.11 (2C), 76.21, 75.88, 52.97, 37.12, 13.93 ppm; IR (KBr): v = 3273, 3105, 3075, 2914, 2116, 1700, 1529, 1503, 1491, 1362, 1344, 1287, 1245 cm⁻¹;

HRMS (TOF) m/z calcd for $C_{19}H_{15}N_3O_3$ [M+H]⁺ = 334.1192, found = 334.1187.

4-((4-Ethynyl-3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)methyl)benzonitrile

Yellowish oil, yield 94 %. ¹H NMR (600 MHz, CDCl₃): $\delta = 7.61 - 7.59$ (m, 2H), 7.52-7.50 (m, 2H), 7.36-7.33 (m, 2H), 7.30-7.28 (m, 2H), 7.19-7.17 (m, 1H), 3.49 (d, *J* = 13.6 Hz, 1H), 3.28 (d, J = 13.6 Hz, 1H), 2.57 (s, 1H), 2.23 (s, 3H) ppm; ¹³C NMR (151) MHz, CDCl₃): $\delta = 169.49$, 157.53, 138.40, 136.96, 132.12 (2C), 130.33 (2C), 128.85 (2C), 125.76, 119.07 (2C), 118.31, 111.93, 76.33, 75.34, 53.99, 41.80, 14.42 ppm; IR (KBr): v = 3258, 3072, 2956, 2926, 2226, 1736, 1709, 1595, 1503, 1398, 1371, 1278, 1248

cm⁻¹; HRMS (TOF) m/z calcd for $C_{20}H_{15}N_3O [M+H]^+ = 314.1293$, found = 314.1292.

4-Ethynyl-3,4-dimethyl-1-phenyl-1,4-dihydro-1H-pyrazol-5-one

Yellowish oil, yield 95 %. ¹H NMR (600 MHz, CDCl₃): $\delta = 7.90-7.88$ (m, 2H), 7.42-7.38 (m, 2H), 7.21-7.18 (m, 1H), 2.43 (s, 1H), 2.23 (s, 3H), 1.63 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃): $\delta = 171.12, 159.95, 137.73,$ 128.82 (2C), 125.24, 118.77 (2C), 77.72, 73.46, 48.60, 22.03, 13.43 ppm; IR (KBr): *v* = 3395, 3222, 3072, 3031, 2989, 2932, 2116, 1709, 1631, 1598, 1500, 1488, 1374, 1296, 1153 cm⁻¹; HRMS (TOF) m/z calcd for $C_{13}H_{12}N_2O$ $[M+H]^+ = 213.1028$, found = 213.1022.

4-Ethynyl-3-methyl-4-(naphthalen-1-yl)-1-phenyl-1,4-dihydro-1H-pyrazol-5-one

Yellowish oil, yield 90 %. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.14$ (d, J = 8.6 Hz, 1H), 7.82 (d, J = 8.6 Hz, 1H), 7.75 (d, J = 8.2 Hz, 1H), 7.65–7.63 (m, 2H), 7.54–7.45 (m, 3H), 7.36–7.32 (m, 3H), 7.17–7.15 (m, 1H), 3.92 (d, J = 14.3 Hz, 1H), 3.81 (d, J = 14.3 Hz, 1H), 2.54 (s, 1H), 1.97 (s, 1H) ppm; ¹³C NMR (151 MHz, CDCl₃): δ = 170.64, 158.80, 137.45, 133.81, 132.08, 129.73, 128.85, 128.73 (2C), 128.64, 128.43, 128.19, 126.12, 125.73, 125.39, 125.17, 125.00, 123.62, 119.21 (2C), 77.43, 75.12, 54.47, 38.04, 14.90 ppm; IR (KBr): v = 3261, 3090, 3049, 3010, 2968, 2920, 1715, 1595, 1494, 1398, 1365, 1278, 1123 cm⁻¹; HRMS (ESI) m/z calcd for $C_{23}H_{18}ON_2$ [M+Na]⁺ = 361.1311, found =

361.1312.

1,3-dibenzyl-3-ethynylindolin-2-one

Yellowish oil, yield 85 %. ¹H NMR (600 MHz, CDCl₃) δ = 7.28 – 7.25 (m, 1H), 7.20 - 7.12 (m, 2H), 7.11 - 7.06 (m, 2H), 7.04 (td, J = 7.5, 1.1 Hz, 1H), 6.96 - 6.91 (m, 1H), 6.75 - 6.70 (m, 1H), 6.43 - 6.42 (m, 1H), 4.93 (d, J =16.0 Hz, 1H), 4.53 (d, J = 16.0 Hz, 1H), 3.45 (q, J = 13.1 Hz, 1H), 2.41 (s, 1H) ppm; ¹³C NMR (151 MHz, CDCl₃) $\delta = 174.43$, 142.39, 135.12, 134.47, 130.72 (2C), 129.25, 129.08, 128.85 (2C), 128.14 (2C), 127.53, 127.38,

126.94 (2C), 124.53, 123.04, 109.76, 81.99, 72.28, 48.77, 44.68, 44.24 ppm; IR (KBr): v = 3291, 3087, 3031, 1793, 1721, 1488 cm⁻¹; HRMS (TOF) m/z calcd for $C_{24}H_{19}NO [M+H] + =$ 338.1545, found = 338.1544.

5-benzyl-5-ethynyl-3-phenyl-2-thioxothiazolidin-4-one

Colorless oil, yield 94 %. ¹H NMR (600 MHz, CDCl₃) δ = 7.48 – 7.43 (m, 3H), 7.41 - 7.33 (m, 5H), 6.84 (s, 2H), 3.65 (d, J = 13.7 Hz, 1H), 3.51 (d, J= 13.7 Hz, 1H), 2.82 (s, 1H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ = 197.42, 172.75, 134.85, 132.73, 130.92 (2C), 129.86, 129.56 (2C), 128.63 (2C), 128.50, 128.25 (2C), 78.50, 77.32, 56.60, 45.90 ppm; IR (KBr): v = 3267,

2920, 1793, 1730, 1350, 1251, 1072 cm⁻¹; HRMS (ESI) m/z calcd for $C_{18}H_{13}NOS_2 [M+H]^+ =$ 324.0511, found = 324.0511.

4-benzyl-4-ethynyl-3-phenylisoxazol-5(4H)-one

calcd for $C_{18}H_{13}NO_2$ [M+H]+ = 276.1025, found = 276.1028.

2.7 Preparation of 4-(1-(4-bromobenzyl)-*1H*-1,2,3-triazol-4-yl)-3-methyl-1phenyl-1,4-dihydro-*1H*-pyrazol-5-one

According to desribed procedure¹¹, to a solution of pyrazolone derivative **13a** (0.12 mmol, 1 eq.) and 1-(azidomethyl)-4-bromobenzene (0.14 mmol, 1.2 eq.) in solution of *t*-BuOH/H₂O (1:1, 2 mL) was added copper(II) sulphate (0.024 mmol, 0.2 eq.) and sodium ascorbate (0.05 mmol, 0.4 eq.). Reaction mixture was stirred at 30 °C overnight and then washed with EtOAc and organic phase was washed with brine and dried over MgSO₄, filtered a purified with column chromatography yielding the corresponding product **17** as colorless oil (92% yield).

4-(1-(4-bromobenzyl)-*1H*-1,2,3-triazol-4-yl)-3-methyl-1-phenyl-1,4-dihydro-*1H*-pyrazol-5-one

White solid, yield 92 %, m. p. 120-121 °C. ¹H NMR (600 MHz, CDCl₃) δ = 7.64 – 7.61 (m, 2H), 7.56 (s, 1H), 7.52-7.50 (m, 2H), 7.32-7.31 (m, 2H), 7.19 – 7.15 (m, 8H), 5.46 (s, 2H), 3.53 (dd, *J* = 36.0, *J'* = 13.6 Hz, 2H), 2.39 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl3) δ = 172.11, 160.12, 143.36, 136.87, 133.35, 132.64, 131.95 (2C), 129.45 (2C), 128.78 (2C), 128.26 (2C), 127.95 (2C), 127.17, 124.97, 122.71, 121.29, 118.98 (2C), 58.68, 53.02, 41.44, 15.30 ppm; IR (KBr): v = 3031, 2923, 1709, 1592, 1497, 1368 cm⁻¹; HRMS (ESI) m/z calcd for C₂₆H₂₂N₅OBr [M+Na]⁺ = 522.0900, found = 522.0900.

2.8 Preparation of 4-benzyl-3-methyl-1-phenyl-4-(phenylethynyl)-1,4dihydro-3*H*-pyrazol-5-one

According to desribed procedure¹², to a solution of iodobenzene (0.13 mmol, 1 eq.) in dry DMF was added $Pd(PPh_3)_2Cl_2$ (0.007 mmol, 0.05 eq.), CuI (0.007 mmol, 0.05 eq.) and Et3N (0.52 mmol, 4 eq.) and pyrazolone derivative **13a**. Reaction mixture was stirred for 2 hours

¹¹ Ch. Menendez, A. Chollet, F. Rodriguez, C. Inard, M. R. Pasca, Ch. Lherbet and M. Baltas, *E. J. Med. Chem.*, **2012**, *52*, 275.

¹² M. Toyota, Ch. Komori and M. Ihara, J. Org. Chem., 2000, 65, 7110.

and then flashed through celite and then diluted in Et₂O. Organic layer was washed with water, brine and then dried over MgSO₄. After evaporation of the solvent was the residue purrified with column chromatography affording corresponding product 18 as yellow oil in 56% yield.

4-benzyl-3-methyl-1-phenyl-4-(phenylethynyl)-1,4-dihydro-3H-pyrazol-5-one

Colorless oil, yield 56 %.¹H NMR (600 MHz, CDCl₃) δ = 7.70 – 7.68 (m, 2H), 7.53-7.51 (m, 2H), 7.39-7.36 (m, 5H), 7.27-7.25 (m, 5H), 7.21 -7.19 (m, 1H), 3.59 (d, J = 13.6 Hz, 1H), 3.39 (d, J = 13.6 Hz, 1H), 2.30 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) $\delta = 170.63$, 158.74, 137.41, 133.41, 131.97, 129.63, 129.51 (2C), 128.87, 128.72 (2C), 128.41 (2C), 128.31 (2C), 127.81, 125.41, 121.92, 119.41 (2C), 86.23, 82.15, 55.28, 42.51, 14.74. ppm; IR (KBr): v = 2926, 2848, 1715, 1598, 1500, 1362 cm-1; IR (KBr): v = 2926, 2848, 1715, 1598, 1500, 1362 cm⁻¹; HRMS (ESI) m/z

calcd for $C_{25}H_{20}N_2O [M+H]^+ = 365.1648$, found = 365.1649.

3 X-Ray of compound 18

Single-crystal X-ray diffraction data for compound **8** were obtained from Bruker ApexII-CCD diffractometer by monochromatized MoK α radiation ($\lambda = 0.71073$ Å) at 150(2)K. The structure was solved by direct methods (SHELXS, Sheldrik, 2008) and refined by full-matrix least squares based on F^2 (SHELXL97). The hydrogen atoms were fixed into idealised positions (riding model) and assigned temperature factors $H_{iso}(H) = 1.2 U_{eq}$ (pivot atom).

Crystal data for **18**: C₂₆H₂₂BrN₅O, $M_r = 500.40$, Monoclinic, $P2_1/n$ (No 14), a = 9.6625 (2) Å, b = 23.9818 (6) Å, c = 10.8059 (2) Å, V = 2255.29 (8) Å³, Z = 4, $D_x = 1.474$ Mg m⁻³, colourless crystal of dimensions $0.27 \times 0.21 \times 0.18$ mm, numerical absorption correction ($\mu = 1.85 \text{ mm}^{-1}$), $T_{min} = 0.634$, $T_{max} = 0.738$; a total of 29307 measured reflections ($\theta_{max} = 27.5^{\circ}$), from which 5177 were unique ($R_{int} = 0.038$) and 3951 observed according to the $I > 2\sigma(I)$ criterion. The refinement converged ($\Delta/\sigma_{max} < 0.001$) to R = 0.050 for observed reflections and $wR(F^2) = 0.126$, GOF = 1.06 for 299 parameters and all 5177 reflections. The final difference map displayed no peaks of chemical significance ($\Delta\rho_{max} = 2.01$, $\Delta\rho_{min}$ -1.39 e.Å⁻³).

Crystallographic data (excluding structure factors) for the structures has been deposited with the Cambridge Crystallographic Data Centre with CCDC number 1038569. Copies of the data can be obtained, free of charge, on application to Cambridge Crystallographic Data Centre, 12

Union Road, Cambridge CB2 1EZ, UK, (fax: +44-(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.Uk).

Literature:

G.M. Sheldrick, Acta Cryst., 2008, A64, 112-122.

4 Detection of EBX using low temperature ¹ H NMR experiment

Figure 1: Generation and decomposition of EBX at -30 °C during 30 minutes time period. Signals of EBX are highlighted by *. ¹ H NMR (CD₂Cl₂): δ = 8.36 (d, *J* = 8.05 Hz, 1H), 8.22 (dd, *J* = 7.3 Hz, *J'* = 1.7 Hz, 1 H), 7.74 (m, 2H), 3.49 (s, 1H) ppm. ¹H NMR spectrum correspondes with data published by Waser et al.¹³

Figure 2: Control experiment with TMS-EBX and TBAF 3H₂O.

¹³ D. F. González, J. P. Brand and J. Waser, Chem. Eur. J., 2010, 16, 9457-9461

-22000	-21000	-20000	-19000	-18000	-17000	-16000	-15000	-14000	-13000	-12000	-11000	-10000	-9000	8000	-7000	-6000	-5000	-4000	-3000	-2000	-1000	. P	-1000	-2000	
																									- မို
																									20
																									- 17 10
																								8	- 9
																									- 8
																									- 8
26	8'97-																								- 6
20	9.92-	-0																			-	-			
10	6'92 0'77-	ä																							- 62
12	5.87 2.82	ŧ													12	-				-					- 8
																								2	- 8
																									10
6†7	128																								120 1
6Z9 1795 298	128	L E								2-2				_											130
216 972 198	130 135																								140
																									0 150
092	7271-	-0																							180
																									190
7Y0 13123	261-	-																		-					1 200
1306-1 0 1304-1 0																									20 210
žž																								33	Ň

-20000 -19000 -19000 -17000 -17000 -17000 -12000 -2000 -12000 -200	-4000	-000	-2000	. 9	-1000	
						- 8
						- 7
						-
						- 9
						- R
						- 8
158'tF—						- 6
						- 63
000010						- 3
120.87~						- 2
						- 8
						- 8
						- A
r125.014						- 7
			-			12
		-				- 9
171.EEF1						6
						- 09
498,101				_		20
916.471—						- 8
ĸ						- 06
τ αγο τ						- 8
7682 LYK						210

-18000	-17000	-16000	-15000	-14000	-13000	-12000	-11000	-10000	0006-	-8000	-7000	-6000	-5000	-4000	-3000	-2000	-1000		-1000	
																				1 -10 -20 -30
967'91	Ţ																			30 20 10 0
158.11	,—														-			-		- 64
829.89 692.89	;— ;—																12			- 09
696.87 696.87 877.87	$\left.\right\rangle$																			90 80 70
086'81 162'121 291'221													-		13					70 160 150 140 130 120 110 100
42-1 ayo 13c																				210 200 190 180 I
MK13 MK13																				220

