Supporting Information for:

Synthesis of directly fused porphyrin dimers through Fe(OTf)₃-mediated oxidative coupling

Chuan-Mi Feng, Yi-Zhou Zhu,* Shao-Chun Zhang, Yun Zang and Jian-Yu Zheng*

State Key Laboratory and Institute of Elemento-organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China zhuyizhou@nanka0i.edu.cn; jyzheng@nankai.edu.cn

Instrumentations and Materials	1
The Procedure for the Synthesis of Singly Linked Dimers 4d, 4e, 4g, and 5	2
The General Procedure for the Synthesis of Fused Dimers 2 and 3	3
NMR Spectra	5
ESR Spectrum	17
The CV Spectra of 1a-1h	18
	Instrumentations and Materials The Procedure for the Synthesis of Singly Linked Dimers 4d, 4e, 4g, and 5 The General Procedure for the Synthesis of Fused Dimers 2 and 3 NMR Spectra ESR Spectrum The CV Spectra of 1a-1h

1. Instrumentations and Materials

All NMR solvents were used as received. Chemical shifts of NMR spectra were reported in ppm down field from internal Me₄Si. UV-Vis-NIR spectra were recorded on spectrophotometer (Shimadzu, Japan). High-resolution mass spectra (HRMS) were recorded on a VG ZAB-HS mass spectrometer under electron spray ionization (ESI) and a Bruker ultra fleXtreme MALDI-TOF/TOF spectrometer. EPR spectra were collected with a Bruker A300 spectrometer equipped with a liquid helium cryostat. The electrochemical experiments were carried out by cyclic voltammetry (CV) using a BAS-100B electrochemical apparatus in deaerated CH_2Cl_2 under argon atmosphere at 298 K. And *n*-Bu₄NPF₆ (0.1 M) in CH_2Cl_2 was employed as the supporting electrolyte. A standard three-electrode cell consists of a glassy carbon disk as work electrode, a platinum wire as a counter electrode, and 0.1 M AgNO₃/Ag (in 0.1 M n-Bu₄NPF₆ in acetonitrile) as reference electrode. The ferrocenium/ferrocene redox couple (Fc⁺/Fc) was taken as the internal standard. All of the solvents were purified and distilled according to the standard procedure. The commercially obtained materials were used directly without further purification unless otherwise noted. Fe(OTf)₃ (98%) was purchased from Aldrich.

2. The Procedure for the Synthesis of Singly Linked Dimers 4d, 4e, 4g, and 5.

General method for the meso-meso linked dimers 4

Under the nitrogen atmosphere, to a stirred solution of porphyrin monomer (0.06 mmol) in dry CH_2Cl_2 (50 mL) was added dropwise a solution of PIFA (13 mg, 0.03 mmol, 0.5 equiv) in dry CH_2Cl_2 (10 mL) over 20 min at RT. The reaction mixture was stirred for additional 50 min at the same temperature. Et_3N (0.2 mL) was added to the reaction mixture. The reaction mixture was poured into water and extracted with $CHCl_3$, then washed with saturated sodium bicarbonate aqueous solution twice. The combined extract was dried over anhydrous Na_2SO_4 and then evaporated to dryness. The crude residue was purified by column chromatography (silica-gel). Compound **4** was obtained after recrystallization from $CHCl_3/CH_3OH$.

4d: ¹H NMR (400 MHz, CDCl₃, RT): $\delta = 8.83 - 8.79$ (m, 8 H), 8.60 (d, J = 5.0 Hz, 4H), 8.12 - 8.08 (m, 8H), 7.88 (d, J = 1.6 Hz, 8H), 7.73 - 7.68 (m, 6H), 7.65 (s, 4H), 1.40 (s, 72H). ¹³C NMR (100 MHz, CDCl₃, RT): $\delta = 148.87$, 146.71, 143.44, 142.55, 142.51, 141.17, 139.88, 133.88, 133.67, 132.54, 132.34, 132.04, 128.78, 127.72, 126.86, 121.10, 121.07, 119.45, 115.66, 34.94, 31.61. HRMS (MALDI) m/z [M]⁺ calcd. for C₁₀₈H₁₁₀N₈Ni₂: 1636.7519, found 1636.7565; Ultraviolet-visible absorption : (in CHCl₃, λ_{max}/nm, ε/mol⁻¹dm³cm⁻¹): 419 (1.89 × 10⁵), 449 (2.16 × 10⁵).

 10^5), 539 (5.22 × 10^4).

4e: ¹H NMR (400 MHz, CDCl₃, RT): δ = 9.58 (d, *J* = 5.0 Hz, 4 H), 8.85 (d, *J* = 5.0 Hz, 4 H), 8.53(d, *J* = 5.0 Hz, 4 H), 8.02 (d, *J* = 5.0 Hz, 4 H), 7.83 (d, *J* = 1.6 Hz, 8 H), 7.66 (s, 4 H), 1.41 (s, 72 H). ¹³C NMR (100 MHz, CDCl₃, RT): δ = 149.00, 146.84, 143.95, 142.72, 142.26, 139.41, 134.08, 133.54, 133.10, 133.00, 128.71, 121.62, 121.30, 115.83, 102.97, 34.94, 31.60.

HRMS (MALDI) m/z [M]⁺ calcd. for C₉₆H₁₀₀Br₂N₈Ni₂: 1643.5158, found 1643.5175; Ultraviolet-visible absorption : (in CHCl₃, λ_{max}/nm , $\varepsilon/mol^{-1}dm^{3}cm^{-1}$): 421 (1.64 × 10⁵), 449 (1.84 × 10⁵), 539 (4.20 × 10⁴).

4g: ¹H NMR (400 MHz, CDCl₃, RT): δ = 8.90 – 8.86 (m, 8 H), 8.61 (d, *J* = 5.0 Hz, 4H), 8.25 (d, *J* = 5.5 Hz, 4H), 8.10 – 8.00 (m, 12H), 7.82 – 7.76 (m, 6H), 7.69 (s, 4H), 1.43 (s, 72H). ¹³C NMR (100 MHz, CDCl₃, RT): δ = 148.71, 145.80, 142.30, 142.00, 141.42, 141.41, 140.66, 134.06, 132.57, 131.49, 131.21, 130.92, 129.30, 127.78, 126.74, 123.92, 122.23, 121.05, 118.94, 34.99, 31.66. HRMS (MALDI) m/z [M]⁺ calcd. for C₁₀₈H₁₁₀N₈Pd₂: 1732.6929, found 1732.6968; Ultraviolet-visible absorption : (in CHCl₃, λ_{max}/nm, ε/mol⁻¹dm³cm⁻¹): 423 (3.22 × 10⁵), 447 (4.81 × 10⁵), 539 (1.31 × 10⁵).

For the *meso-* β singly linked **5**

Under the nitrogen atmosphere, to a stirred solution of **1e** (49 mg, 0.06 mmol) and BF₃Et₂O (4 mg, 0.03 mmol, 0.5 equiv) in dry CH₂Cl₂ (50 mL) was added dropwise a solution of PIFA (13 mg, 0.03 mmol, 0.5 equiv) in dry CH₂Cl₂ (10 mL) over 20 min at RT. The reaction mixture was stirred for additional 10 min at the same temperature. Et₃N (0.2 mL) was added to the reaction mixture. The reaction mixture was poured into water and extracted with CHCl₃, then washed with saturated sodium bicarbonate aqueous solution twice. The combined extract was dried over anhydrous Na₂SO₄ and then evaporated to dryness. The crude residue was purified by column chromatography (silica-gel). **5** (39 mg, 80%) was obtained after recrystallization from CHCl₃/CH₃OH.

¹H NMR (400 MHz, CDCl₃, RT): $\delta = 9.66$ (d, J = 5.0 Hz, 1H), 9.63 (s, 1H), 9.60 – 956 (m, 3H), 9.07 – 9.04 (m, 2H), 8.91 – 8.86 (m, 3H), 8.76 (d, J = 5.0 Hz, 2H), 8.66 (bs, 3H), 8.46 (d, J = 4.8 Hz, 1H), 8.10 (d, J = 1.7 Hz, 2H), 7.80 (d, J = 1.7 Hz, 2H), 7.71 – 7.68 (m, 4H), 1.48 – 1.40 (m, 72H). ¹H NMR (400 MHz, CDCl₃, -40°C): $\delta = 9.66$ (s, 1H), 9.68 (d, J = 5.0 Hz, 1H), 9.62 – 9.58 (m, 3H), 9.14 (d, J = 5.0 Hz, 1H), 9.01 (s, 1H), 8.96 (d, J = 5.0 Hz, 2H), 8.92 (d, J = 5.0 Hz, 1H), 8.80 (d, J = 5.0 Hz, 2H), 8.73– 8.67 (m, 3H), 8.47 (d, J = 4.8 Hz, 1H), 8.17 – 8.12 (m, 4H), 7.80 (d, J = 1.8 Hz, 2H), 7.71 (bs, 1H), 7.69 (s, 3H), 7.59 (s, 2H), 1.51 – 1.46 (m, 32H), 1.44 (s, 18H), 1.40 (s, 18H). ¹³C NMR (100 MHz, CDCl₃, RT): $\delta = 149.24$, 149.09, 149.04, 145.90, 144.42, 143.90, 143.85, 143.78, 143.62, 143.56, 143.34, 143.05, 142.43, 142.38, 142.24, 141.38, 139.55, 139.35, 137.88, 133.72, 133.68, 133.64, 133.20, 133.16, 133.12, 133.07, 132.52, 129.27, 128.90,

128.74, 121.46, 121.32, 121.21, 121.12, 120.54, 112.16, 106.74, 102.76, 102.66, 35.00, 34.96, 31.67, 31.62.

HRMS (ESI) m/z $[M]^+$ calcd. for C₉₆H₁₀₀Br₂N₈Ni₂: 1642.5080, found 1642.5073; Ultraviolet-visible absorption : (in CHCl₃, λ_{max}/nm , $\varepsilon/mol^{-1}dm^3cm^{-1}$): 417 (2.14 × 10⁵), 431 (1.80 × 10⁵), 534 (3.57 × 10⁴).

3. The General Procedure for the Synthesis of Fused Dimers 2 and 3.

Under the nitrogen atmosphere, to a stirred solution of **1** (0.03 mmol) in dry 25 mL CH₂Cl₂/CH₃NO₂ (4:1) was added 75 mg Fe(OTf)₃ (0.15 mmol, 5 equiv) at RT. The reaction mixture was stirred for additional 2 h. Saturated aqueous sodium bicarbonate (10 mL) was added, and the mixture was extracted with CHCl₃. The combined organic layer was washed with saturated sodium bicarbonate aqueous solution and dried over anhydrous Na₂SO₄, then evaporated to dryness. The crude residue was purified by silica-gel column chromatography. Compounds **2** and **3** were obtained after recrystallization from CHCl₃/CH₃OH.

2a: HRMS (ESI) m/z [M]⁺ calcd. for $C_{108}H_{106}N_8Cu_2$: 1642.7117, found 1642.7131; Ultraviolet-visible-infrared absorption: (in CHCl₃, λ_{max}/nm , $\varepsilon/mol^{-1}dm^3cm^{-1}$): 410 (5.11 × 10⁵), 558 (3.83 × 10⁴), 574 (4.04 × 10⁴), 780 (0.58 × 10⁴), 995 (1.00 × 10⁴).

2b: HRMS (MALDI) m/z [M]⁺ calcd. for C₉₆H₉₆Br₂N₈Cu₂: 1650.4835, found 1650.4868; Ultraviolet-visible-infrared absorption: (in CHCl₃, λ_{max}/nm , $\varepsilon/mol^{-1}dm^{3}cm^{-1}$): 416 (1.06 × 10⁵), 563 (9.34 × 10⁴), 885 (1.74 × 10⁴), 997 (2.79 × 10⁴).

2d: ¹H NMR (400 MHz, CDCl₃, RT): δ = 7.75 – 7.70 (m, 12H), 7.61 (s, 4H), 7.59 (s, 8H), 7.56 – 7.52 (m, 10H), 1.43 (s, 72H). ¹³C NMR (100 MHz, CDCl₃, RT): δ = 149.16, 146.97, 146.49, 145.86, 145.38, 140.14, 138.77, 134.74, 132.44, 131.03, 130.76, 127.77, 127.74, 127.20, 127.07, 124.55, 123.76, 121.19, 113.26, 34.93, 31.63.

HRMS (ESI) m/z [M]⁺ calcd. for $C_{108}H_{106}N_8Ni_2$: 1632.7206, found 1632.7218; Ultraviolet-visible-infrared absorption: (in CHCl₃, λ_{max}/nm , $\varepsilon/mol^{-1}dm^3cm^{-1}$): 406 (7.81 × 10⁴), 573 (8.70 × 10⁴), 647 (1.09 × 10⁴), 873 (1.34 × 10⁴), 932 (1.37 × 10⁴).

2e: ¹H NMR (400 MHz, V(CDCl₃)/V(CS₂) = 4:1, RT): δ = 8.52 (d, *J* = 4.9 Hz, 4H), 7.77 (d, *J* = 4.9 Hz, 4H), 7.60 (s, 4H), 7.54 (s, 8H), 7.47 (s, 4H), 1.43 (s, 72H). ¹³C NMR (100 MHz, V(CDCl₃)/V(CS₂) = 4:1, RT): δ = 149.15, 147.45, 146.53, 145.52, 145.47, 138.37, 134.76, 132.04, 131.70, 127.65, 127.49, 125.01, 121.40, 113.31, 107.89, 34.81, 31.59.

HRMS (ESI) m/z $[M]^+$ calcd. for C₉₆H₉₆Br₂N₈Ni₂: 1638.4767, found 1638.4787; Ultraviolet-visible-infrared absorption: (in CHCl₃, λ_{max} /nm, ε /mol⁻¹dm³cm⁻¹): 411 (1.58 × 10⁵), 572 (1.23 × 10⁵), 651 (1.37 × 10⁴), 864 (1.72 × 10⁴), 937 (2.10 × 10⁴).

2f: ¹H NMR (400 MHz, V(CDCl₃)/V(CS₂) = 4:1, RT): δ = 7.83 – 7.79 (m, 4H), 7.79 – 7.76 (m, 4H), 7.74 – 7.72 (m, 4H), 7.71 – 7.69 (m, 8H), 7.65 – 7.61 (m, 8H), 7.59 – 7.55 (m, 6H), 1.46 (s, 72H). ¹³C NMR (100 MHz, V(CDCl₃)/V(CS₂) = 4:1, RT): δ = 148.91, 144.77, 144.51, 143.86, 143.45, 140.49, 139.30, 134.01, 132.70, 130.21, 130.13, 128.19, 127.71, 127.11, 126.36, 125.55, 121.15, 116.02, 110.88, 34.82, 31.63.

HRMS (ESI) m/z [M]⁺ calcd. for $C_{108}H_{106}N_8Pd_2$: 1728.6616, found 1728.6632; Ultraviolet-visible-infrared absorption: (in CHCl₃, λ_{max}/nm , $\varepsilon/mol^{-1}dm^3cm^{-1}$): 407 (6.51 × 10⁴), 567 (8.70 × 10⁴), 604 (3.06 × 10⁴), 638 (9.20 × 10³), 931(6.62 × 10³).

3a: HRMS (ESI) m/z [M]⁺ calcd. for $C_{108}H_{108}N_8Cu_2$: 1644.7273, found 1644.7291; Ultraviolet-visible-infrared absorption: (in CHCl₃, λ_{max}/nm , $\varepsilon/mol^{-1}dm^3cm^{-1}$): 418 (5.72 × 10⁴), 543 (8.12 × 10⁴), 717 (1.68 × 10⁴), 777 (5.56 × 10⁴).

3b: HRMS (MALDI) m/z $[M]^+$ calcd. for C₉₆H₉₈Br₂N₈Cu₂: 1648.4678, found 1648.4708; Ultraviolet-visible-infrared absorption: (in CHCl₃, λ_{max}/nm , $\varepsilon/mol^{-1}dm^3cm^{-1}$): 419 (7.62 × 10⁴), 541 (5.43 × 10⁴), 779 (3.48 × 10⁴).

3c: HRMS (MALDI) m/z [M]⁺ calcd. for C₉₆H₉₈N₁₀Cu₂O₄: 1582.6348, found 1582.6375; Ultraviolet-visible-infrared absorption: (in CHCl₃, λ_{max}/nm , $\varepsilon/mol^{-1}dm^{3}cm^{-1}$): 420 (5.54 × 10⁴), 538 (3.92 × 10⁴), 780 (2.53 × 10⁴).

3d: ¹H NMR (400 MHz, CDCl₃, RT): δ = 9.50 (d, *J* = 5.0 Hz, 2H), 9.06 (s, 2 H), 8.80 (d, *J* = 4.9 Hz, 2 H), 8.41 – 8.39 (m, 4 H), 8.36 – 8.33 (m, 4H), 7.96 – 7.94 (m, 8H), 7.84 (d, *J* = 1.8 Hz, 4 H), 7.76 (bs, 2 H), 7.72 (bs, 2 H), 7.76 – 7.62 (m, 6 H), 1.54 (s, 36H), 1.51 (s, 36H). ¹³C NMR (100 MHz, CDCl₃, RT): δ = 149.32, 149.28, 144.30, 144.15, 143.67, 143.48, 143.22, 142.87, 142.23, 141.83, 140.29, 139.95, 139.24, 139.03, 134.56, 133.67, 133.24, 132.62, 132.13, 132.03, 131.95, 131.54, 129.00, 128.65, 127.77, 127.08, 122.57, 122.09, 121.43, 121.21, 120.86, 109.82, 35.08, 35.03, 31.74, 31.68.

HRMS (ESI) m/z [M]⁺ calcd. for $C_{108}H_{108}N_8Ni_2$: 1634.7363, found 1634.7359; Ultraviolet-visible-infrared absorption: (in CHCl₃, λ_{max}/nm , $\varepsilon/mol^{-1}dm^3cm^{-1}$): 413 (6.45 × 10⁴), 502 (4.82 × 10⁴), 544 (4.87 × 10⁴), 754 (3.52 × 10⁴)

3e: ¹H NMR (400 MHz, CDCl₃, RT): δ = 9.41 (s, 2H), 9.12 – 9.11 (m, 4H), 8.96 (s, 2H), 8.74 (d, J = 3.8 Hz, 2H), 8.44 (d, J = 5.0 Hz, 2H), 8.39 (d, J = 4.8 Hz, 2H), 7.91 (s, 4H), 7.84 – 7.65 (m, 8H), 1.54 (s, 36H), 1.51 (s, 36H). ¹³C NMR (100 MHz, CDCl₃, RT): δ = 149.44, 149.41, 144.68, 144.61, 143.45, 143.37, 143.31, 142.84, 142.39, 142.11, 140.22, 138.83, 138.61, 134.96, 134.00, 133.70, 133.21, 132.91, 132.41, 132.27, 128.90, 128.55, 123.15, 122.55, 121.66, 121.43, 110.10, 104.24, 35.09, 35.04, 31.73, 31.68.

HRMS (ESI) m/z $[M]^+$ calcd. for C₉₆H₉₈Br₂N₈Ni₂: 1640.4924, found 1640.4943; Ultraviolet-visible-infrared absorption: (in CHCl₃, λ_{max}/nm , $\varepsilon/mol^{-1}dm^3cm^{-1}$): 419 (8.56 × 10⁴), 498 (5.85 × 10⁴), 533 (5.62 × 10⁴), 684 (1.16 × 10⁴), 756 (4.66 × 10⁴).

3f: ¹H NMR (400 MHz, CDCl₃, RT): δ = 9.38 (d, *J* = 4.9 Hz, 2H), 8.94 (s, 2H), 8.88 (bs, 4H), 8.73 (d, *J* = 4.9 Hz, 2H), 8.50 (d, *J* = 5.1 Hz, 2H), 8.45 (d, *J* = 5.1 Hz, 2H), 7.88 (d, *J* = 1.4 Hz, 4H), 7.77 (bs, 8H), 1.54 (s, 36H), 1.52 (s, 36H). ¹³C NMR (100 MHz, CDCl₃, RT): δ = 149.70, 149.69, 144.56, 144.46, 144.19, 144.16, 143.15, 141.55, 139.75, 139.14, 139.10, 138.26, 137.98, 135.27, 135.06, 134.99, 134.96, 133.01, 129.61, 129.07, 128.84, 128.79, 128.40, 125.05, 124.18, 122.08, 121.85, 112.81, 35.11, 35.07, 31.71, 31.65.

HRMS (ESI) m/z $[M]^+$ calcd. for C₉₆H₉₈N₁₀Ni₂O₄: 1572.6438, found 1572.6453; Ultraviolet-visible-infrared absorption: (in CHCl₃, λ_{max} /nm, ε /mol⁻¹dm³cm⁻¹): 442 (6.14×10⁴), 533 (5.56 × 10⁴), 765 (4.10 × 10⁴)

3g: ¹H NMR (400 MHz, CDCl₃, RT): δ = 9.74 (d, *J* = 5.0 Hz, 2H), 9.33 (s, 2H), 8.78 (d, *J* = 5.0 Hz, 2H), 8.57 (d, *J* = 4.9 Hz, 2H), 8.51 (d, *J* = 4.9 Hz, 2H), 8.48 – 8.35 (m, 4H), 8.15 (s, 4H), 8.11 – 8.05 (m, 4H), 8.01 (d, *J* = 1.4 Hz, 4H), 7.84 (s, 2H), 7.79 (s, 2H), 7.70 (d, *J* = 6.1 Hz, 6H), 1.60 (s, 36H), 1.56 (s, 36H). ¹³C NMR (100 MHz, CDCl₃, RT): δ = 149.18, 149.09, 143.11, 143.00, 142.66, 142.60, 142.41, 141.37, 141.27, 141.21, 140.35, 140.30, 140.27, 140.07, 133.90, 133.61, 133.53, 133.38, 131.11, 131.09, 130.82, 130.79, 129.68, 129.52, 127.79, 126.95, 125.47, 124.98, 123.47, 121.40, 121.12, 111.80, 35.17, 35.11, 31.83, 31.74.

HRMS (ESI) m/z [M]⁺ calcd. for $C_{108}H_{108}N_8Pd_2$: 1730.6773, found 1730.6790; Ultraviolet-visible-infrared absorption: (in CHCl₃, λ_{max}/nm , $\varepsilon/mol^{-1}dm^3cm^{-1}$): 417 (7.51 × 10⁴), 543 (6.53 × 10⁴), 606 (1.07 × 10⁴), 684 (1.44 × 10⁴), 747 (4.06 × 10⁴).

3h: ¹H NMR (400 MHz, V(CDCl₃)/V(CS₂) = 4:1, RT): δ = 9.61 (d, J = 4.9 Hz, 2 H), 9.21 (s, 2 H), 8.84 (d, J = 5.1 Hz, 4 H), 8.72 (d, J = 5.0 Hz, 2 H), 8.67 (d, J = 5.1 Hz, 2 H), 8.61 (d, J = 5.1 Hz, 2 H), 8.10 (d, J = 1.3 Hz, 4 H), 7.95 (d, J = 1.4 Hz, 4 H), 7.86 (s, 2 H), 7.82 (s, 2 H), 1.63 (s, 36 H), 1.59 (s, 36 H). ¹³C NMR (100 MHz, VCDCl₃/VCS₂ = 4:1, RT): δ = 149.34, 149.24, 143.62, 143.42, 143.39, 142.87, 141.08, 141.00, 140.35, 139.32, 139.13, 137.51, 137.38, 135.26, 133.75, 133.44, 133.32, 132.59, 130.32, 129.55, 129.27, 127.52, 127.43, 127.29, 126.57, 121.89, 121.66, 114.37, 34.96, 34.89, 31.69, 31.63.

HRMS (ESI) m/z $[M]^+$ calcd. for $C_{96}H_{98}N_{10}Pd_2O_4$: 1668.5878, found 1668.5880; Ultraviolet-visible-infrared absorption: (in CHCl₃, λ_{max}/nm , $\varepsilon/mol^{-1}dm^3cm^{-1}$): 426 (1.16 × 10⁵), 528 (1.07 × 10⁵), 749 (1.37 × 10⁴).

4. NMR Spectra

Figure S1. ¹H NMR spectrum of 2d (400 MHz, CDCl₃ at 25°C).

Figure S2. ¹³C NMR spectrum of 2d (100 MHz, CDCl₃ at 25°C).

Figure S3. ¹H NMR spectrum of 2e (400 MHz, $V_{CDCl_3}/V_{CS_2} = 4:1$ at 25°C).

Figure S4. ¹³C NMR spectrum of **2e** (100 MHz, $V_{CDCL}/V_{CS_2} = 4:1$ at 25°C, δ (¹³C_{CS₂}) = 192.51).

Figure S5. ¹H NMR spectrum of 2g (400 MHz, $V_{CDCl_3}/V_{CS_2} = 4:1$ at 25°C).

Figure S6. ¹³C NMR spectrum of 2g (100 MHz, $V_{CDCL}/V_{CS_2} = 4:1$ at 25°C, δ (¹³Ccs₂) = 192.49).

Figure S7.¹H NMR spectrum of **3d** (400 MHz, CDCl₃ at 25°C).

Figure S8. ¹³C NMR spectrum of 3d (100 MHz, CDCl₃ at 25°C).

Figure S9. ¹H NMR spectrum of 3e (400 MHz, CDCl₃ at 25°C).

Figure S10. ¹³C NMR spectrum of 3e (100 MHz, CDCl₃ at 25°C).

Figure S11. ¹H NMR spectrum of 3f (400 MHz, CDCl₃ at 25°C).

Figure S12. ¹³C NMR spectrum of 3f (100 MHz, CDCl₃ at 25°C).

Figure S13. ¹H NMR spectrum of 3g (400 MHz, CDCl₃ at 25°C).

Figure S14. ¹³C NMR spectrum of **3g** (100 MHz, CDCl₃ at 25°C).

Figure S15. ¹H NMR spectrum of **3h** (400 MHz, $V_{CDCl_3}/V_{CS_2} = 4:1$ at 25°C).

.

Figure S16. ¹³C NMR spectrum of **3h** (100 MHz, $V_{CDCL}/V_{CS_2} = 4:1$ at 25°C, δ (¹³Ccs₂) = 192.43).

Figure S17. ¹H NMR spectrum of 4d (400 MHz, CDCl₃ at 25°C).

Figure S18. ¹³C NMR spectrum of 4d (100 MHz, CDCl₃ at 25°C).

Figure S19. ¹H NMR spectrum of 4e (400 MHz, CDCl₃ at 25°C).

Figure S20. ¹³C NMR spectrum of 4e (100 MHz, CDCl₃ at 25°C).

Figure S21. ¹H NMR spectrum of 4g (100 MHz, CDCl₃ at 25°C).

Figure S22. ¹³C NMR spectrum of 4g (400 MHz, CDCl₃ at 25°C).

Figure S23. ¹H NMR spectrum of 5 (400 MHz, CDCl₃ at 25°C).

Figure S24. ¹H NMR spectrum of 5 (400 MHz, CDCl₃ at -40°C).

Figure S25. 13 C NMR spectrum of 5 (100 MHz, CDCl₃ at 25°C).

5. ESR Spectrum

Figure S26. ESR spectrum of Fe(OTf)₃-mediated oxidative coupling of 1f. (g = 2.0082)

6. The CV Spectra of 1a-1h

