Supplementary Information

Design and Solid Phase Synthesis of New DOTA Conjugated (+)-Biotin Dimers Planned to Develop Molecular Weight-Tuned Avidin Oligomers

Alessandro Pratesi, Mauro Ginanneschi, Fabrizio Melani, Marco Chinol, Angela Carollo, Giovanni Paganelli, Marco Lumini, Mattia Bartoli, Marco Frediani, Luca Rosi, Giorgio Petrucci, Luigi Messori, and Anna Maria Papini

Contents:

- Potential energy data for molecular modelling studies
- Sinthesis and characterization of Fmoc-Lys-OtBu
- Bis-biotins characterization via HPLC-ESI-MS
- MALLS correlation functions

Figure 1S. Structures of bis-biotins designed for the molecular modeling study. In brackets is reported the linker arm length (Å) between the two amide C=O of the biotin residues, calculated on the fully extended planar conformation.

	150 K		300 K		450 K				
Entry	Ep (Kcal/mol)	sd	Ep (Kcal/mol)	sd	Ep (Kcal/mol)	sd			
bis-biotins with non-PEG spacers									
1	-6734	24	-5180	43	-3481	65			
2	-6792	23	-5231	43	-3529	69			
3	-6766	24	-5209	45	-3504	68			
4	-6794	25	-5208	46	-3502	67			
5	-6766	25	-5190	43	-3509	67			
6	-6781	24	-5177	43	-3427	68			
7	-6731	23	-5145	46	-3393	71			
8	-6723	22	-5111	45	-3354	72			
bis-biotins with PEG spacers									
1	-6730	24	-5180	41	-3506	64			
2	-6775	29	-5215	41	-3549	72			
9	-6795	23	-5229	45	-3538	69			
10	-6773	24	-5224	41	-3528	67			
11	-6810	22	-5244	45	-3521	77			
12	-6795	26	-5211	41	-3519	68			
13	-6772	24	-5185	47	-3468	63			
14	-6744	23	-5160	44	-3439	67			
15	-6744	25	-5141	44	-3422	73			

 Table 1S. Potential energy data for type 1 complex.

Type 1 Complex: potential energy average from 50 conformations recorded at a constant temperature (*Ep*) and standard deviation (sd) recorded during dynamic simulations. The structures 1 and 2 are the same in both series.

	150 K		300 K		450 K				
Entry	Ep (Kcal/mol)	sd	Ep (Kcal/mol)	sd	Ep (Kcal/mol)	sd			
bis-biotins with non-PEG spacers									
1	-6719	21	-5162	43	-3455	76			
2	-6751	26	-5189	45	-3502	67			
3	-6754	24	-5178	44	-3473	68			
4	-6743	24	-5173	46	-3494	68			
5	-6728	25	-5140	44	-3406	69			
6	-6692	24	-5105	49	-3373	67			
7	-6711	23	-5103	43	-3363	77			
8	-6663	28	-5070	44	-3322	72			
bis-biotins with PEG spacers									
1	-6719	27	-5175	45	-3497	64			
2	-6762	22	-5207	43	-3508	67			
9	-6786	26	-5234	41	-3535	64			
10	-6767	24	-5194	44	-3494	70			
11	-6755	22	-5180	41	-3509	65			
12	-6730	23	-5165	42	-3439	66			
13	-6734	22	-5158	44	-3451	72			
14	-6673	25	-5073	45	-3344	65			
15	-6637	24	-5026	46	-3292	69			

Table 2S. Potential energy data for type 2 complex.

Type 2 complex: potential energy average from 50 conformations recorded at a constant temperature (*Ep*) and standard deviation (sd) recorded during dynamic simulations. The structures 1 and 2 are the same in both series

Scheme 1S. Synthetic route for compound 3.

Synthesis of *tert*-butyl 2-((((9*H*-fluoren-9-yl)methoxy)carbonyl)amino)-6-aminohexanoate (Fmoc-Lys-OtBu, 3). 2.0 g of Fmoc-L-Lys(Boc)-OH (1) were added with 2.33 g of di-terbuthyl dicarbonate, Boc₂O, and 156.5 mg of 4-dimethylaminopiridine, DMAP, in 30 mL of anhydrous *tert*-buthanol. The reaction was stirred for 30 min at 35 °C and for 15h at room temperature. At the end of the reaction the product, **2**, was checked by TLC (AcOEt/exane 2:1), $R_f = 0.75$.

The solvent was removed under vacuum and the solid residue was dissolved 30 mL of ethyl acetate and 5 mL of water; the organic layer was washed with a saturated solution of NaHCO₃ (20 mL for 3 times), and with water (20 mL for 3 times). The organic phase was dried with anhydrous Na₂SO₄, the solvent was removed under vacuum and the crude product was purified by direct-phase LC on silica gel using AcOEt/exane 30:70.

1.70 g of the purified product **2** were dissolved in 56 mL of a solution containing 28% of TFA in AcOEt. The solution was stirred at 45 °C for 1h. After, another 10 mL of TFA were added. The reaction was stirred for 2h and at the end TFA was removed under nitrogen flow. The crude compound **3**, was solubilized in 10 mL of CH₃CN/H₂O 2:3 and purified by solid phase extraction on reverse-phase C18 silica gel, obtaining the pure compound Fmoc-Lys-O*t*Bu (**3**) (311 mg, 57% yield). ¹H NMR (298 K), δ (DMSO, 200 MHz): 7.78-7.75 (m, 2H), 7.54-7.50 (m, 2H) 7.41-7.26 (m, 4H), 4.01-3.90 (m, 2H), 1.65 (m, 2H), 1.56-1.52 (m, 15H). ESI-MS: calculated *m/z* 425.5 [M+H]⁺; found 425.5.

Figure 2

Figure 3S. HPLC-MS analysis of 6.

Method: 15% to 50% of eluent B in 5 min; flow 0.6 mL/min. Rt= 3.12 min

HPLC purity >98.8%

ESI-MS analysis - *m/z:* [M+H]⁺ 1613.34; [M+2H]²⁺ 807.44; [M+3H]³⁺ 583.53

Figure 4S. HPLC-MS analysis of 9.

Method: 15% to 50% of eluent B in 5 min; flow 0.6 mL/min. Rt= 3.46 min

HPLC purity >98.5%

ESI-MS analysis - *m/z*: [M+H]⁺ 1611.07; [M+2H]²⁺ 806.33; [M+3H]³⁺ 537.89

Figure 5S. HPLC-MS analysis of 11.

method: 20% to 60% of eluent B in 5 min; flow 0.6 mL/min. Rt = 3.54 min

HPLC purity >99%

ESI-MS analysis - *m/z*: [M+H]⁺ 1998.24; [M+2H]²⁺ 999.82; [M+3H]³⁺ 666.74

Figure 6S. HPLC-MS analysis of 14.

method: 20% to 60% of eluent B in 5 min; flow 0.6 mL/min. Rt = 3.61 min

HPLC purity >99%

ESI-MS analysis - *m/z*: [M+2H]²⁺ 1073.88; [M+3H]³⁺ 716.09

Figure 7S. HPLC-MS analysis of 16.

method: 20% to 50% of eluent B in 5 min; flow 0.6 mL/min. Rt = 3.36 min

HPLC purity 99%

ESI-MS analysis - *m/z*: [M+H]⁺ 1441.25; [M+2H]⁺ 721.00

Figure 8S. HPLC-MS analysis of 18.

method: 20% to 50% of eluent B in 5 min; flow 0.6 mL/min. Rt = 3.42 min

HPLC purity 98%

ESI-MS analysis - *m/z*: [M+H]⁺ 1327.28; [M+2H]⁺ 664.01

Figure 9S. Correlation function of native avidin, experimental data are showed as black dots, while the result of interpolation is showed as red line.

Figure 10S. Correlation function for Av/16 complexes, experimental data are showed as black dots, while the result of interpolation is showed as red line. A) 'R 10.76 min; B) 'R 9.44 min; C) 'R 8.54 min; D) 'R 8.11 min.

Figure 11S. Correlation functions of Av/18 polymer at different incubation time: A) 0 min.; B) 45 min; C) 150 min.; D) 360 min.