Electronic Supplementary Information

$\mathbf{2}^{\prime}$ - O-(1,3,6,9,12-Pentaoxacyclopentadecan-2-ylmethyl)-aminocarbonyl-3',5'-O-(tetraisopropyldisiloxan-

 1,3-diyl)-uridine (3e).Method B. To the solution of 2, prepared from $974 \mathrm{mg}(2.0 \mathrm{mmol})$ of $\mathbf{1}$ and CDI ($325 \mathrm{mg}, 2.0 \mathrm{mmol}$) in DCM $\left(5 \mathrm{~cm}^{3}\right)$ 2-aminomethyl-15-crown-5 ($514 \mathrm{mg}, 2.0 \mathrm{mmol}$) was added under nitrogen. The mixture was allowed to react for 3 months at ambient temperature, then diluted with $\mathrm{CHCl}_{3}\left(100 \mathrm{~cm}^{3}\right)$, washed with water $\left(100 \mathrm{~cm}^{3}\right), 5 \%$ citric acid $\left(100 \mathrm{~cm}^{3}\right)$, and water $\left(100 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated, and the residue was chromatographed on silica gel (stepwise gradient of $2 \rightarrow 3 \rightarrow 4 \rightarrow 6 \rightarrow 8 \rightarrow 10 \% \mathrm{MeOH}$ in CHCl_{3}, v/v). Yield $679 \mathrm{mg}(44.5 \%)$.
$\boldsymbol{N} \boldsymbol{\alpha}-[3$ ',5'- \boldsymbol{O}-(Tetraisopropyldisiloxan-1,3-diyl)uridin-2'-O-ylcarbonyl]-L-leucyl-L-phenylalaninamide (3f).

Method B. To the solution of $2(2.0 \mathrm{mmol})$, prepared in DCM ($5 \mathrm{~cm}^{3}$), H-Leu-Phe- NH_{2} hydrochloride (942 $\mathrm{mg}, 3.0 \mathrm{mmol})$ and DIEA $\left(0.610 \mathrm{~cm}^{3}, 3.5 \mathrm{mmol}\right)$ were added under nitrogen. The mixture was allowed to react for 3 months at ambient temperature, then diluted with $\mathrm{CHCl}_{3}\left(100 \mathrm{~cm}^{3}\right)$, washed with water $\left(100 \mathrm{~cm}^{3}\right), 5 \%$ citric acid $\left(100 \mathrm{~cm}^{3}\right)$, and water $\left(100 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated, and the residue was chromatographed on silica gel (stepwise gradient of $33 \rightarrow 50 \% \mathrm{EtOAc}$ in CHCl_{3}, then $33 \rightarrow 50 \%$ acetone in $\mathrm{CHCl}_{3}-\mathrm{EtOAc}(1: 1)$, v/v). Yield 364 mg (23.0\%).

2'-O-[4,9-bis(Trifluoroacetyl)-12-(trifluoroacetylamino)-4,9-diazadodecan-1-ylaminocarbonyl]-3',5'-O-(tetraisopro-pyldisiloxan-1,3-diyl)uridine (3p).

Method B. The solution of $2(2.904 \mathrm{~g}, 5.0 \mathrm{mmol}$, $)$ in dry DCM $\left(50 \mathrm{~cm}^{3}\right)$ was added dropwise to the stirred, ice-cooled solution of spermine $(1.012 \mathrm{~g}, 5.0 \mathrm{mmol})$ in $\operatorname{DCM}\left(100 \mathrm{~cm}^{3}\right)$ within 30 min . After 1 h the mixture was allowed to warm to $20^{\circ} \mathrm{C}$, evaporated to dryness, coevaporated with THF ($30 \mathrm{~cm}^{3}$), dissolved in dry THF $\left(20 \mathrm{~cm}^{3}\right)$, and S-ethyl trifluoroacetate $\left(5.0 \mathrm{~cm}^{3}, 39 \mathrm{mmol}\right)$ was added in one portion. The mixture was kept overnight, evaporated to dryness (STENCH!) and the residue was chromatographed on silica gel (stepwise gradient of $0 \rightarrow 5 \rightarrow$ $10 \rightarrow 15 \rightarrow 20 \%$ acetone in $\left.\mathrm{CHCl}_{3}-\mathrm{EtOAc}, 1: 1, \mathrm{v} / \mathrm{v} / \mathrm{v}\right)$. Compound $1(526 \mathrm{mg}, 21.6 \%)$ was eluted in the first fractions. The desired 3p (white foam; $2.208 \mathrm{~g}, 44.0 \%$) was eluted with $5 \rightarrow 10 \%$ acetone (in $\mathrm{CHCl}_{3}-\mathrm{EtOAc}, 1: 1$ $\mathrm{v} / \mathrm{v})$. Further increase of the eluent polarity $\left(15 \rightarrow 20 \%\right.$ acetone) gave the minor product, $\mathbf{1 , 1 2 - b i s}\left[\mathbf{3}^{\prime}, \mathbf{5}^{\prime}-\boldsymbol{O}\right.$ -
(tetraisopropyldisiloxan-1,3-diyl)uridin-2'- O-ylcarbonylamino]-4,9-bis(trifluoroacetyl)-4,9-diazadodecane (3r) as a white foam ($1.147 \mathrm{~g}, 32.3 \%$). $\mathrm{R}_{f} 0.53$ (EtOAc). MALDI-TOF ($2,5-\mathrm{DHBA}$): $[\mathrm{M}+\mathrm{H}]^{+}$calc. 1420.77 , found 1421.18, $[\mathrm{M}+\mathrm{Na}]^{+}$calc. 1442.75 , found $1442.93,[\mathrm{M}+\mathrm{K}]^{+}$calc. 1458.86 , found $1458.56 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 11.41(\mathrm{~s}, 2 \mathrm{H}$, $H-3), 7.69\left(\mathrm{~d}, 2 \mathrm{H}, J_{5,6}=8.0 \mathrm{~Hz}, H-6\right), 7.50,7.44(2 \mathrm{br} . \mathrm{t}, 2 \mathrm{H}, \mathrm{OCONH}$, rotamers), $5.65(\mathrm{~s}, 2 \mathrm{H}, H-1$ '), $5.59(\mathrm{~d}, 2 \mathrm{H}$, $\left.J_{5,6}=8.0 \mathrm{~Hz}, H-5\right), 5.31\left(\mathrm{~m}, 2 \mathrm{H}, H-2^{\prime}\right), 4.49\left(\mathrm{~m}, 2 \mathrm{H}, H-3^{\prime}\right), 4.12-3.88\left(\mathrm{~m}, 4 \mathrm{H}, H-5{ }^{\prime}\right), 3.83\left(\mathrm{~m}, 2 \mathrm{H}, H-4{ }^{\prime}\right), 3.42-$ $3.26\left(\mathrm{~m}, 8 \mathrm{H}^{\#}, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 2.98\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NHCH}_{2}\right), 1.85-1.60\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 1.51\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $1.08-0.80\left(\mathrm{~m}, 56 \mathrm{H}, \mathrm{Pr}^{i}\right)$.

5'-O-(4,4'-Dimethoxytrityl)-2'-O-(1,3,6,9,12-pentaoxa-cyclopentadecan-2-ylmethylaminocarbonyl)uridine (5e). The fast eluting compound, $\mathbf{3}^{\prime}, \mathbf{5}^{\prime}-\boldsymbol{O}, \boldsymbol{O}$ '-bis($4, \mathbf{4}^{\prime}$-dimethoxytrityl) $\mathbf{2}^{\prime}$ - $\boldsymbol{O}-[(1,3,6,9,12-$ pentaoxacyclopentadecan-2-yl)methylaminocar-bonyl]uridine was isolated ($293 \mathrm{mg}, 13.0 \%$); white amorphous solid, $\mathrm{R}_{f} 0.36\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 17: 3\right)$. MALDI-TOF $(2,4,6-\mathrm{THAP}):[\mathrm{M}+\mathrm{Na}]^{+}$calc. 1147.22 , found $1147.84,[\mathrm{M}+\mathrm{K}]^{+}$ calc. 1163.33 , found $1163.93 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 11.41(\mathrm{~s}, 1 \mathrm{H}, H-3), 7.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCON} H), 7.50\left(\mathrm{~d}, 1 \mathrm{H}, J_{5,6}=8.1 \mathrm{~Hz}, \mathrm{H}\right.$ 6), 7.29-7.10 (m, 18H, $\mathrm{Ar} H), 6.86-6.72(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar} H), 6.08\left(\mathrm{~d}, 1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}}=6.1 \mathrm{~Hz}, H-1^{\prime}\right), 5.35\left(\mathrm{~d}, 1 \mathrm{H}, J_{5,6}=8.1\right.$ Hz, H-5), 5.02 (m, 1H, H-2'), 4.24 (m, 1H, H-4'), 3.71 (m, 12H, CH3), 3.67-3.39 (m, 21H ${ }^{\#}, H-5$ ', $\left.\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\right)_{4} \mathrm{CH}_{2}\right), 3.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3{ }^{\prime}\right)$.
$\boldsymbol{N} \boldsymbol{\alpha}$-[5'-O-(4,4'-Dimethoxytrityl)uridin-2'- \boldsymbol{O}-ylcarbonyl]-L-leucyl-L-phenylalaninamide (5f). Compound 3f ($593 \mathrm{mg}, 0.75 \mathrm{mmol}$) was desilylated and tritylated according to general procedures. The desired product was purified by column chromatography on silica gel (stepwise gradient of $3 \rightarrow 5 \rightarrow 10 \% \mathrm{MeOH}$ in CHCl_{3}-acetone ($2: 1$) $+0.5 \% \mathrm{Et}_{3} \mathrm{~N}(\mathrm{v} / \mathrm{v} / \mathrm{v})$. Yield $485 \mathrm{mg}(76.0 \%)$, white foam. $\mathrm{R}_{f} 0.30$ (acetone). MALDI-TOF MS (2,4,6-THAP): $[\mathrm{M}+\mathrm{Na}]^{+}$calc. 872.35, found 872.62, $[\mathrm{M}+\mathrm{K}]^{+}$calc. 888.32, found 888.62. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 11.45(\mathrm{~s}, 1 \mathrm{H}, H-3), 7.90(\mathrm{~d}$, $\left.1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{~N} H \mathrm{CHCH}_{2} \mathrm{Ph}\right), 7.72\left(\mathrm{~d}, 1 \mathrm{H}, J_{5,6}=8.1 \mathrm{~Hz}, H-6\right), 7.48-7.10(\mathrm{~m}, 17 \mathrm{H}, \mathrm{Ar} H, \mathrm{OCON} H, \mathrm{NH}$) $), 6.89(\mathrm{~d}$, $4 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{Ar} H), 5.90\left(\mathrm{~d}, 1 \mathrm{H}, J_{1^{\prime}, 2}=4.4 \mathrm{~Hz}, H-1^{\prime}\right), 5.52\left(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 5.43\left(\mathrm{~d}, 1 \mathrm{H}, J_{5,6}=8.1\right.$ $\mathrm{Hz}, H-5), 5.13\left(\mathrm{~m}, 1 \mathrm{H}, H-2^{\prime}\right), 4.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{Ph}\right), 4.37\left(\mathrm{~m}, 1 \mathrm{H}, H-3{ }^{\prime}\right), 4.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHBu}{ }^{i}\right), 3.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $\left.4^{\prime}\right), 3.73\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.52-3.10\left(\mathrm{~m}, 2 \mathrm{H}, H-5\right.$ '), $3.05-2.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 1.57-1.22\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHMe} 2\right)$, 0.86-0.69 (m, 6H, CH $\left.\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$.
$N \alpha-[3 '-O-(N, N$-Diisopropylamino-2-cyanoethoxyphosphinyl)-5'-O-4,4'-dimethoxytrityluridin-2'- O -
ylcarbonyl]-L-leucyl-L-phenylalaninamide (6f). Chromatography: $50 \rightarrow 100 \%$ acetone in $\mathrm{CHCl}_{3}-\mathrm{EtOAc}(1: 1)+$ $1 \% \mathrm{Et}_{3} \mathrm{~N}(\mathrm{v} / \mathrm{v} / \mathrm{v})$. Yield $271 \mathrm{mg}(51.6 \%), \mathrm{R}_{f} 0.13,0.20$. MALDI-TOF (2,6-DHAP-citrate): $[\mathrm{M}+\mathrm{H}]^{+}$calc. 1051.15 , found $1053.41,[\mathrm{M}+\mathrm{Na}]^{+}$calc. 1072.46 , found $1071.67 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 11.47(\mathrm{~s}, 1 \mathrm{H}, H-3), 8.08(\mathrm{~d}, 2 \mathrm{H}, J=11.7 \mathrm{~Hz}$, $\left.\mathrm{N} H_{2}\right), 7.83\left(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{~N} H \mathrm{CHCH}_{2} \mathrm{Ph}\right), 7.70\left(\mathrm{~d}, 1 \mathrm{H}, J_{5,6}=8.1 \mathrm{~Hz}, H-6\right), 7.43-7.07(\mathrm{~m}, 15 \mathrm{H}, \mathrm{ArH}$, OCONH), $6.88(\mathrm{~d}, 4 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{Ar} H), 5.86\left(\mathrm{~d}, 1 \mathrm{H}, J_{1^{\prime}, 2},=4.8 \mathrm{~Hz}, H-1^{\prime}\right), 5.46\left(\mathrm{~d}, 1 \mathrm{H}, J_{5,6}=7.8 \mathrm{~Hz}, H-5\right), 5.32$ ($\mathrm{t}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz}, H-2 '), 4.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{Ph}\right), 4.46(\mathrm{~m}, 1 \mathrm{H}, H-3 '), 4.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHBu}{ }^{i}\right), 3.95(\mathrm{~m}, 1 \mathrm{H}, H-4$ '), $3.73\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.58-3.46\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{POCH}_{2}, \mathrm{CHN}\right), 3.04-2.99(\mathrm{~m}, 2 \mathrm{H}, H-5$ '), 2.87-2.81 (m, 2H, CH2Ph), 2.59 $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right), 1.23-0.98\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{NCHCH}_{3}\right), 0.83-0.72\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHMe}_{2}\right), 0.65-0.59(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{31} \mathrm{P}\left(\right.$ DMSO- $\left.d_{6}\right): 148.926$.

Fig. 1 Examples of MALDI-TOF mass spectra of 2'-carbamatemodified oligonucleotides: a) bis-pyrene (ON26), b) bis-15-crown-5 (ON27), and c) bis-spermine (ON31).

