Supplementary Data

Olefin-olefin Reactions Mediated by Lewis Acids may afford Cyclopropanes rather than Cyclobutanes: A Mechanistic Study of Cyclopropane Formation Reaction using a 1-Seleno-2-silylethene

Shoko Yamazaki and Shinichi Yamabe*

Department of Chemistry, Nara University of Education, Takabatake-cho, Nara 630-8528, Japan

compound No. ^{a)}	Total energy $(a.u.)^{b}$	Zero-point vibrational energy
1		(kcal/mol) ^{c)}
6	-2810.22117045	59.73019
7	-8023.47842931	43.15797
8	-8062.81740206	60.29502
9	-8062.81160687	60.38861
10	-10833.7369119	104.20855
11	-10833.7059180	104.40912
12 TS	-10833.7000807	104.64084
13	-10833.7388056	104.10806
14	-10833.7072417	103.94361
15 TS	-10833.6968380	103.89124
16	-10833.7156622	105.93634
17 TS	-10833.7123823	105.61291
18	-10833.7357338	104.81444
19	-10833.7086967	106.13861
20 TS	-10833.7057029	105.55750

Table. Total energies and zero-point vibrational energies

21	-10833.7351719	106.63839
22 TS	-10833.7083564	105.89247
23	-10833.7401155	107.03479
24 TS	-10833.7264861	104.87628
25	-10833.7887735	104.69457
26 TS	-10833.6889465	105.35962
27	-10833.7424719	106.75357
28 TS	-10833.703123	105.48107
29	-10833.7063676	106.08025
30	-7199.94579400	48.06287
34a	-7199.88997920	47.24652
34b	-7199.90023697	47.40261
35	-10010.1926431	108.39035
36 TS	-10010.1772782	107.56229
37	-10010.1868761	108.11501
38	-10010.1839886	108.18431
39	-10010.1748949	107.81931
40 TS	-10010.1368023	109.95803
41	-10010.1772059	109.95021
42 TS	-10010.1562192	109.70635
43	-10010.1859858	110.52408
44	-10010.1825455	108.63807
45 TS	-10010.1751035	108.99215
46	-10010.1974084	109.92319
47 TS	-10010.1700920	109.93637
48	-10010.1694843	110.42960
51	-11480.1713476	157.51345

52 TS	-11480 1713420	157.53455
52	11400 1004527	159,47052
55	-11480.1884557	158.47952
54	-10123.5257080	115.36999
55 TS	-10123.4994176	115.02155
56	-10123.5283200	115.67335
s-trans of 38	-10010.1880766	108.26353
s-trans of 40 TS	-10010.1340729	109.94048
s-trans of 41	-10010.1774454	109.90118
s-trans of 42 TS	-10010.1596368	109.60582
s-trans of 43	-10010.1905423	110.54862
acrolein (s-cis)- ZnBr ₂	-7086.53802993	41.44264
acrolein-ZnBr ₂ -1 complex (corresponding to 39)	-9896.83010670	102.41608
acrolein-ZnBr ₂ -1 addition TS (corresponding to 40) TS	-9896.76918072	104.25077
acrolein-ZnBr ₂ -1 zwitter-ion (corresponding to 41)	-9896.80471299	104.16327

a) TSs stand for transition states which have sole imaginary frequencies.

b) Total energies were calculated by B3LYP/6-311+G(2d,p) & 3-21G* SCRF.

 c) Zero-point vibrational energies were obtained by vibrational analyses of B3LYP/6-31G* & 3-21G* SCRF.

Figure 1S. Geometries and energies of reactants complexes stabilized by Se-Sn (10) and Se-CO (11) attractions and transition state (TS 12) of addition steps by chair (synclinal) orientations. Small white circles denote hydrogen atoms. The atomic numbering follows that in Scheme 4. Energies in square brackets are relative to those of reactants 6 and 7 (negative values mean stabilized systems). Energy barrier E is relative to that of reactants complex 11. For TS, reaction-coordinate vectors corresponding to the sole imaginary frequencies \ddagger are sketched.

2.485 Å

2.445 Å

Figure 8S. A second cyclobutane formation process starting from the *trans* zwitterionic intermediate **18** (shown in Figure 3S).

cyclobutane-SnCl₄ [-1.0 kcal•mol⁻¹]

29

1.970 /

Se

Figure 10S. Transformation of complex 37 to its rotamers, Se-Zn coordinated complexes 38 and 39.

39

reactants complex Se-Zn coordinated [-5.0 kcal•mol⁻¹]

