Structure-Alkali Metal Cation Complexation Relationships for Macrocyclic PNP-Lariat Ether Ligands

Richard A. Bartsch,^{*a} Eun Kyung Lee,^{a,b} Sangki Chun^a, Nazar Elkarim,^a Krystyna Brandt,^{*c,d} Iwona Porwolik-Czomperlik,^c Mariola Siwy,^c Dariusz Lach^c, and Jerzy Silberring^e

^aDepartment of Chemistry and Biochemistry, Texas Tech University, Lubbock Texas 79409-1061, USA

^bDepartment of Chemistry, Korea University, 1-Anamdong, Seoul 136-701, South Korea ^cInstitute of Polymer Chemistry, Polish Academy of Sciences, 41-819 Zabrze, Poland

^dInistitute of Chemistry and Environmental Protection, Pedagogical University, 42-201 Czestochowa, Poland

^eFaculty of Chemistry and Regional Laboratory, Jagiellonian University, 30-060 Krakow, Poland

 Table S1
 ³¹P NMR spectral data for monoaryloxy-substituted PNP-lariat ethers 3c-f.

 Table S2
 Combustion analysis and ¹H NMR spectral data for monoaryloxy-substitued PNP-lariat Ethers 3c-f.

 Table S3
 ³¹P NMR data for tetraaryloxy-substituted PNP-lariat ethers 4c-f.

 Table S4 Combustion analysis and ¹H NMR spectral data for tetraaryloxy-substituted PNP-lariat

 ethers 4c-f.

Table S5 ³¹P NMR spectral data for per-(2-naphthyloxy) *gem*-polymethylenediamino-bridgedPNP-bis-lariat ethers **10a-f** and monomeric PNP-lariat ether analogue **7**.

Table S6 Combustion analysis and ¹H NMR spectral data for heterogeneously-disubstituted

 PNP-lariat ether 7 and bis-PNP-lariat ethers 10a-f.

		$^{31}P\{-^{1}H\}N$	3	$^{31}P{=^{1}H} NMR$						
		$\delta_{\rm p}$, ppm ^a	_		J_{PP} , Hz^{b}			$J_{\rm put}$, Hz		
Compound	P _A	P _M	P _x	A-M	A-X	M-X	P_AH	P _M H	P _x H	
3c	5.90	27.60	21.10	75.0	70.4	77.3	12.3°	d	25.8°	
3d 3e 3f	6.40 6.46 5.65	27.30 27.48 27.32	21.30 20.64 20.86	73.5 75.8 77.7	68.6 70.7 70.4	80.8 80.6 79.8	12.4 ^c 12.5 12.6 ^e	d	23.5 ^e 23.6 ^e 24.5 ^e	

 Table S1
 ³¹P NMR spectral data for monoaryloxy-substituted PNP-lariat ethers 3c-f.

^aAMX spin system: $P_a = P(OCH_2 \sim)[OAr(z)]; P_M = PCl_2; P_X = P(OCH_2 \sim)Cl.$ ^bJ_{P-P} values calculated according to ref. 27. ^cFor each peak of the double doublet split into triplets. ^dNo proton coupling was evident. ^eFor each peak of the double doublet split into quintets.

	¹ H NMR $\delta_{\rm H}$, ppm ^b											
Formula	Elemen C	<u>ntal ana</u> <u>H</u>	lysis, % [*] <u>N</u>	(CH_2) OP	(CH ₂) OC	(CH) _{Ar}	CHO	CH ₃	(CH ₂) OC=O	(CH ₂) C	(CH ₃) ₂ C	(CH ₃) _X C
$3c C_{17}H_{26}O_8N_3P_3Cl_2$	<u>34.35</u> 34.11	$\frac{4.47}{4.35}$	<u>6.97</u> 7.02	4.67- 4.11 (m,4H)	3.85- 3.61 (3m,12H)	8.05- 6.75 (2m,4H)		1.40- 1.30 (t,3H)	4.36- 4.29 (qt,2H)	1.69- 1.66 (2s,2H)	1.31- 1.23 (2s,6H)	0.68 (s,9H)
$\textbf{3d} \ C_{22}H_{38}O_6N_3P_3Cl_2$	<u>41.30</u> 41.38	<u>5.88</u> 5.96	<u>6.64</u> 6,58	4.45- 4.08 (m,4H)	3.85- 3.57 (2m,12H)	7.31- 6.71 (3m,4H)						
$3e C_{15}H_{21}O_7N_3P_3Cl_2$	<u>32.55</u> 32.46	<u>3.83</u> 3.79	<u>7.48</u> 7.57	4.58- 4.15 (2m,2H)	3.91- 3.44 (m,12H)	7.95 6.93 (4m,4H)	10.50- 10.40 (S,1H)					
$\mathbf{3f} \ \mathbf{C}_{15} \mathbf{H}_{21} \mathbf{O}_7 \mathbf{N}_3 \mathbf{P}_3 \mathbf{Cl}_2$	<u>32.60</u> 32.46	<u>3.88</u> 3.79	<u>7.49</u> 7.57	4.58- 4.09 (2m,4H)	4.00- 3.53 (m,12H)	8.09- 7.16 (2m,4H)	10.02 9.90 (2s,1H)					
^a Calcd./found. ^b In CDCl ₃												

Table S2 Combustion analysis and ¹H NMR spectral data for monoaryloxy-substituted PNP-lariat ethers 3c-f.

$\frac{^{31}}{P{-1H}} NMR, A_2B spin system^a}{\delta_P, ppm}$									
Compound	P _A ^c	$P_{\rm B}^{\rm d}$	$J_{p_{-P}}, Hz^{b}$						
4 c 4 d 4 e 4 f	12.80 (d) 13.70 (d) 13.70 (d) 13.47 (d)	8.90 (t) 9.40 (t) 9.67 (t) 9.71 (t)	93.5 89.6 91.0 91.2						

Table S3 ³¹P NMR data for tetraaryloxy-substituted PNP-lariatethers 4c-f.

^aA₂B spin system: $P_A = P(OCH_2 \sim)[OAr]$; $P_B = PCl_2$; d - double doublet, corresponds to P_A (2 equally substituted

P atoms), t - triplet, corresponds to $P_{B_-}P_A^{~b}J_{P_-P}$ and δ_P values calculated according to ref. 28. Proton coupling causes collapse into a broad doublet. ^dProton coupling causes weak broadening.

	1 H NMR $\delta_{\rm H}$, ppm ^b									
Formula	<u>Elementa</u> C H	al analy I	<u>ysis, %</u> ' N	(CH ₂) OP	(CH ₂) OC	$(CH)_{Ar}$	СНО	CH ₃	(CH ₂) OC=O	
$4c \ C_{44}H_{60}O_9N_3P_3$	<u>53.30</u> 5 53.44 6	<u>.98</u> .07	<u>4.33</u> 4.25	4.39- 4.05 (m,4H)	3.71- 3.58 (2m,12H)	7.83- 6.81 (4m,16H)		1.39- 1.28 (t,12H)	4.37- 4.29 (qt,8H)	
$\textbf{4d} \ C_{50}H_{104}O_9N_3P_3$	$\frac{52.41}{52.26}$ $\frac{9}{9}$.20 .06	<u>3.57</u> 3.66	4.90- 4.15 (m,4H)	3.75- 3.61 (2m,12H)	7.94- 6.84 (2m,16H)		1.39- 1.32 (t,12H)	4.36- 4.28 (qt,8H)	
$4e \ C_{36}H_{36}O_{13}N_3P_3$	$\frac{53.09}{53.27} \frac{4}{4}$	<u>.32</u> .44	<u>5.30</u> 5.18	4.40- 4.00 (2m,4H)	3.89- 3.52 (2m,12H)	8.00- 6.94 (5m,16H)	10.40- 9.89 (3s,4H)			
$\mathbf{4f} \ \mathbf{C}_{36}\mathbf{H}_{36}\mathbf{O}_{13}\mathbf{N}_{3}\mathbf{P}_{3}$	$\frac{53.13}{53.27}$ $\frac{4}{4}$	<u>.40</u> .44	<u>5.24</u> 5.18	4.27- 4.07 (m,4H)	3.80- 3.57 (2m,12H)	8.00- 7.03 (6M,16H)	10.04 9.83 (2s,4H)			
^{a-} Calcd./found. ^b In Cl	DCl ₃									

Table S4 Combustion analysis and ¹H NMR spectral data for tetraaryloxy-substituted PNP-lariat ethers 4c-f.

$\frac{31}{P} \{-^{1}H\}$ NMR, AMX spin system									$^{31}P{^{1}H} NMR$			
		δ	$_{\rm P}, \rm ppm^b$			J _{P-P} , Hz ^c		J _{P-H} , Hz				
Compound	n ^a	P _A	P _M	P _x	A-M	A-X	M-X	$\overline{P_A}H^e$	$P_M H^f$	P_{X} H^{g}		
7	3	16.87	9.24	26.36	71.9	66.6	58.1	8.5	7.2			
10a	2	14.28	10.75	21.38	72.6	72.2	85.3	8.2	7.3			
10b	3	14.45	10.96	21.49	71.8	71.8	85.2	9.4	7.1			
10c	6	14.57	11.10	21.65	71.5	71.7	85.9	8.4	7.4			
10d	7	14.54	11.06	21.60	71.5	71.5	85.9	8.7	7.5			
10e	10	14.64	11.18	21.61	71.4	71.4	85.9	8.9	7.3			
10f	12	14.63	11.16	21.60	71.4	71.4	85.9	8.5	7.3			

Table S5 ³¹P NMR spectral data for per-(2-naphthyloxy) *gem*-polymethylenediamino-bridged PNP-bis-lariat ethers **10a-f** and monomeric PNP-lariat ether analogue **7**.

^aNumber of CH₂ groups in the oligomethylene(di)amino substituent ^b δ_p and J_{P-P} values for the AMX coupling system were calculated according to ref. 27. For **7**: P_A = P(OCH₂~)(NHPr): P_M = P(OCH₂~)(ONaph) P_X = P(ONaph)₂. For **10a-f**: P_A = P(OCH₂~)(NHR); P_M =; P(OCH₂~)(ONaph) P_X = P(ONaph)₂ ^cDegenerate double doublet (collapse into a triplet due to overlap of the inner lines. ^dWell-resolved double doublets. ^eEach line splits into 6 signals on proton coupling. ^fEach line splits into a triplet. ^gLack of noticeable proton coupling.

	<u>H NMR δ_{H}, ppm^b</u>									
Formula	Elemen C	<u>ntal ana</u> H	<u>lysis, %</u> N	(CH_2)	(CH_2) OC	(CH) _{Ar}	NH	CH_2N	CH ₃	CH ₃
7 $C_{21}H_{31}O_6N_4P_3Cl_2$	<u>42.15</u> 42.07	<u>5.28</u> 5.17	<u>9.28</u> 9.35	4.60-4.40 (m,4H)	4.40-3.45 (3m,12H)	7.88-7.45 (3m,7H)	1.87-1.67 (2m,1H)	3.00-2.80 (m,2H)	0.99-0.77 (m,3H)	1.44-1.19 (2m,2H)
$10a\ C_{78}H_{80}O_{16}N_8P_6$	<u>59.73</u> 59.62	<u>5.18</u> 5.10	<u>7.00</u> 7.13	4.60-4.40 (m,4H)	4.40-3.45 (3m,12H)	7.88-7.45 (3m,7H)		2.50-2.10 (m,4H)		
${\bf 10b} \ C_{79} H_{82} O_{16} N_8 P_6$	<u>59.99</u> 59.85	<u>5.27</u> 5.18	$\frac{7.01}{7.07}$	4.34-4.10 (2m,8H)	3.71-3.36 (m,24H)	7.82-7.12 (m,42H)		2.18 (d,4H)		0.67 (s,2H)
10c $C_{82}H_{88}O_{16}N_8P_6$	<u>60.47</u> 60.52	<u>5.36</u> 5.41	<u>6.92</u> 6.89	4.65-4.20 (2m,8H)	3.83-3.39 (m,24H)	7.89-7.20 (m,42H)		2.45-2.00 (m,4H)		0.60 (m,8H)
$10d \ C_{_{83}}H_{_{90}}O_{_{16}}N_{_8}P_{_6}$	<u>60.85</u> 60.73	<u>5.61</u> 5.49	<u>6.72</u> 6.83	4.20-3.78 (2m,8H)	3.67-3.37 (m,24H)	7.89-7.20 (m,42H)		2.31-1.96 (2m,4H)		0.83-0.54 (2m,10H)
10e $C_{86}H_{96}O_{16}N_8P_6$	<u>61.44</u> 61.36	<u>5.83</u> 5.71	<u>6.60</u> 6.66	4.75-4.22 (2m,8H)	3.52-3.47 (m,24H)	7.80-7.23 (m,42H)		2.40-1.83 (m,4H)		0.93 (m,8H)
$10f \ C_{88} H_{100} O_{16} N_8 P_6$	<u>61.90</u> 61.75	<u>5.93</u> 5.85	<u>6.49</u> 6.55	4.16-3.81 (2m,8H)	3.65-3.34 (m,24H)	7.87-7.18 (m,42H)		2.31-2.33 (m,4H)		0.76-1.26 (m,10H)
^a Calcd./found. ^b In CI	DCl ₃ .									

Table S6 Combustion analysis and ¹H NMR spectral data for heterogeneously disubstituted PNP-lariat ether **7** and bis-PNP-lariat ethers **10a-f**.