Electrochiroptical response of a hexaarylethane derivative with the helical π-skeleton: Drastic UV-Vis and CD spectral changes upon electrolysis of dispiro[4,5-dibromo-9,10-dihydrophenanthrene-9,9':10,9'-bi[9H]xanthene]

by Takanori Suzuki, et al.
rac-1a: $\mathrm{C}_{38} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{O}_{2}, M 670.40$, colorless rod from $\mathrm{CHCl}_{3}, 0.4 \times 0.15 \times 0.15 \mathrm{~mm}$, monoclinic $P 21 / \mathrm{c}, \mathrm{a}=12.462(6), \mathrm{b}=15.613(7), \mathrm{c}=15.042(7) \AA, \beta=111.35(1)^{\circ}, U=2725(2) \AA{ }^{3}, D_{C}(Z=$ $4)=1.633 \mathrm{~g} \mathrm{~cm}^{-1}$. A total of 6174 unique data points $\left(2 \theta_{\max }=55.0^{\circ}\right)$ were measured at $T=$ 153 K on a Rigaku Mercury CCD camera apparatus (Mo-K α radiation, $\lambda=0.71069 \AA$).

Numerical absorption correction was applied $\left(\mu=30.19 \mathrm{~cm}^{-1}\right)$. The structure was solved by the direct method and refined by the full-matrix least-squares method on F with anisotropic temperature factors for non-hydrogen atoms. Hydrogen atoms were located at the calculated positions. The final R and $R w$ values are 0.036 and 0.043 for 3567 reflections with $I>3 \sigma I$ and 379 parameters. The maximum residual electron density is 0.46 e \AA A -3 . Atom numbering system is shown in Figure S1.
 $P 2_{1} / \mathrm{n}, \mathrm{a}=10.059(5), \mathrm{b}=14.309(7), \mathrm{c}=19.109(10) \AA, \beta=97.049(7) \mathrm{i}, U=2729(2) \AA^{3}, D_{C}(Z=$ $4)=1.315 \mathrm{~g} \mathrm{~cm}^{-1}$. A total of 6033 unique data points $\left(2 \theta_{\max }=55.0^{\circ}\right)$ were measured at $T=$ 153 K on a Rigaku Mercury CCD camera apparatus (Mo-K α radiation, $\lambda=0.71069 \AA$). Numerical absorption correction was applied ($\mu=0.79 \mathrm{~cm}^{-1}$). The structure was solved by the direct method and refined by the full-matrix least-squares method on F with anisotropic temperature
factors for non-hydrogen atoms. Hydrogen atoms were located at the calculated positions. The final R value is 0.057 for 2925 independent reflections with $I>3 \sigma I$ and 379 parameters. The maximum residual electron density is 0.33 e \AA A ${ }^{-3}$. Atom numbering system is shown in Figure S2.
(R)-6: $\mathrm{C}_{4} 6 \mathrm{H}_{40} \mathrm{Br}_{2} \mathrm{O}_{6}, M 848.63$, colorless platelet from $\mathrm{CHCl}_{3}-\mathrm{EtOH}, 0.1 \times 0.1 \times 0.03 \mathrm{~mm}$, monoclinic, $C 2, \mathrm{a}=21.614(2), \mathrm{b}=9.8916(8), \mathrm{c}=9.6740(4) \AA, \beta=113.459(2)^{\circ}, U=1897.3(2)$ $\AA^{3}, D_{C}(Z=2)=1.485 \mathrm{~g} \mathrm{~cm}^{-1}$. A total of 2261 unique data points $\left(2 \theta_{\max }=55.0^{\circ}\right)$ were measured at $T=123 \mathrm{~K}$ on a Rigaku Mercury CCD camera apparatus (Mo-K α radiation, $\lambda=0.71069$ \AA). Numerical absorption correction was applied $\left(\mu=21.39 \mathrm{~cm}^{-1}\right)$. The structure was solved by the Patterson method and refined by the full-matrix least-squares method on F with anisotropic temperature factors for non-hydrogen atoms. Hydrogen atoms were located at the calculated positions. The final R value is 0.032 for 1777 independent reflections with $I>3 \sigma I$ and 245 parameters. The maximum residual electron density is 0.37 e $\AA-3$. The axial chirality of this diasteromer was determined to be (R) based on the relative stereochemistry to the two asymmetric carbons derived from (R)-1,3-butanediol. This molecule is located on the crystallographic 2-fold axis. Atom numbering system is shown in Figure S3b.

Figure S1. Ortep drawing of rac-1a showing the atom numbering system. The intramolecular contact between two Br groups is 3.423(1) \AA, and the twisting angle around the biphenyl axis is 41.4(1) ${ }^{\circ}$

Figure S2. Ortep drawing of $\mathrm{rac} \mathbf{- 1 b}$ showing the atom numbering system. The intramolecular contact between two Me groups is $3.017(7) \AA$, and the twisting angle around the biphenyl axis is 40.2(1) ${ }^{\circ}$.

Figure S3a. Ortep drawing of $(R)-6$. The twisting angle around the biphenyl axis is 89.8°.

Figure S3b. Ortep drawing of $(R)-6$ (half unit) showing the atom numbering system.

