Table S1. Spectroscopic and ECL properties of ruthenium systems.

Complex/Reactant	Reaction Conditions	λ_{em}	λ_{ecl}	ф _{ет}	\$ ecl	Ref
$Bu(bpy)e^{2+}$	MeCN	(IIII) 608	(IIII) 608	0.062	0.05	25 41 50
$Ru(0py)_3^{2+}/C \cap 2^{2-}$		(10	(10	0.002	0.03	23,41,50
$Ru(bpy)_3 / C_2O_4$	$H_2O(0.1 \text{ M} H_2SO_4)$	610	610		0.02	51
$Ru(bpy)_{3}^{2^{+}}/C_{2}O_{4}^{2^{-}}$	H ₂ O(0.1MNaCl&0.1MKH ₂ PO ₄		591	0.062	0.001	113
)				1	
$Ru(bpy)_3^{2+}/S_2O_8^{2-}$	MeCN:H ₂ O (50:50 v/v)	625	625		0.025	51,52
Ru(bpy) ₃ ²⁺ /TPrA	H ₂ O (0.2 M KH ₂ PO ₄)	610	610		1.0	27, ^h
Ru(bpy) ₃ ²⁺ /TPrA	0.15 M phosphate buffer; 0.2 –					63
	1 mM halide (Br ⁻ , Cl ⁻ , I ⁻)					
$Ru(dmbp)_{3}^{2+}/C_{2}O_{4}^{2-}$	H ₂ O(0.1MNaCl&0.1MKH ₂ PO ₄		594	0.045	5x10 ⁻³	113
)					
$Ru(phen)_3^{2+}$	MeCN	590	590			3
$Ru(phen)_3^{2+}/C_2O_4^{2-}$	H ₂ O(0.1MNaCl&0.1MKH ₂ PO ₄		585	0.065	0.001	113
)				5	
$Ru(terpy)_3^{2+}$	MeCN		660			3
$Ru(TPTZ)_3^{2+}$	MeCN					3
$Ru(bpz)_3^{2+}$	MeCN	585	585	~0.03	~0.04	419,420
$Ru(bpz)_3^{2+}/S_2O_8^{2-}$	H ₂ O (0.1M Na ₂ SO ₄)	585	590			421
$Ru(dp-bpy)_3^{2+}$	MeCN	635	635	0.26	0.14	53
$Ru(dp-phen)_3^{2+}$	MeCN	615	615	0.31	0.24	53
Ru(dp-bpy) ₃ ²⁺ /TPrA	H ₂ O (0.2M phosphate buffer)					53
Ru(dp-	H ₂ O (0.2M phosphate buffer)					53
phen) ₃ ²⁺ /TPrA						
Ru(dmphen) ₃ ²⁺ / C ₂ O ₄ ²⁻	H ₂ O(0.1MNaCl&0.1MKH ₂ PO ₄)		591			113
(bpy) ₂ Ru(bphb) ²⁺	MeCN	624	624	0.08	0.006 6	121
$(bpv)_2Ru(bphb)^{2+}/T$	MeCN (0 1M TBAPF ₆)	624	624	0.08	1.5	121

PrA						
$(bpy)_2Ru(bphb)^{2+}/T$	MeCN:H ₂ O (50:50 v/v; 0.1M				1.6	121
PrA	TBAPF ₆)	-				
$(bpy)_2Ru(bphb)^{2+}/T$	$H_2O(0.2 \text{ M KH}_2PO_4)$				0.058	121
PrA		-				
$(bpy)_2Ru(bphb)^{2+}/S_2$	MeCN	624	624	0.08	0.4	121, ^c
O ₈ ²⁻						
$(bpy)_2Ru(bphb)^{2+}/S_2$	MeCN:H ₂ O (50:50 v/v)				0.7	121, ^c
O ₈ ²⁻		-				
$[(bpy)_2Ru]_2(bphb)^{4+}$	MeCN	624	624	0.11	0.16	121
[(bpy) ₂ Ru] ₂ (bphb) ⁴⁺ / TPrA	MeCN	624	624	0.11	2.6	121, ^c
$[(bpy)_2Ru]_2(bphb)^{4+}$	MeCN:H ₂ O (50:50 v/v)				2.8	121, ^c
$\int (hny) Rul_{h}(hnh)^{4+}$	$H_{2}O(0.2 \text{ M} \text{K}H_{2}PO_{4})$				2.0	121 °
$/ TPr \Delta$	$\Pi_{2}O(0.2 \text{ WI} \text{K}\Pi_{2}I O_{4})$	_			2.0	121,
$\left[(\text{bny})_2 \text{Ru}\right]_2 (\text{bnbb})^{4+}$	MeCN	624	624	0.11	0.6	121 °
$(0^{1})^{2}$	Wieerv	024	024	0.11	0.0	121,
$\left[(bnv)_2Ru\right]_2(bnhb)^{4+}$	MeCN H_2O (50.50 v/v)				0.8	121 °
$/ S_2 O_8^{2-}$					0.0	121,
$(bpv)_2Ru(AZA-$	$MeCN:H_2O(0.1M KH_2PO_4)$	603	603	0.062	0.84	111
$(op)^{2+}/TPrA$		000	0.02	0.002	0.01	
(bpv) ₂ Ru(AZA-	H ₂ O (0.2M KH ₂ PO ₄)	613	613	0.062	0.51	111
$(bpy)^{2+}/TPrA$						
(bpy) ₂ Ru(CE-	H ₂ O (0.1M Tris)		650		1.0	110, ⁱ
bpy) ²⁺ /TPrA	/					
(bpy) ₂ Ru(CE-	MeCN (0.1M TBAClO ₄)		655		~0.5	110, ^j
bpy) ²⁺ / TPrA						
(bpy) ₂ Ru(bpy-	$H_2O(0.5M Na_2SO_4)$	600	680			422
$(C_{19})^{2+}/(C_2O_4^{2-})^{2+}$						
(bpy) ₂ Ru(bpy-O-	MeCN(0.1M TBAPF ₆)	618	618	0.75	1.0	122, ^k
$(C_8)^{2+}$						
Den-8-Ru	MeCN (0.1M TBAPF ₆)	618	618	0.75	~5	122,1
$Ru(v-bpy)_3^{2+}$	MeCN (0.1 M TBAClO ₄)	~630	~650			423
$(bpy)_2Ru(DC-bpy)^{2+}$	$H_2O(0.1M \text{ KH}_2PO_4)$	629	629	0.030	0.73	424
$(bpy)_2Ru(DC-bpy)^{2+}$	MeCN:H ₂ O (50:50 v/v)	624	624	0.025	0.60	424
$(bpy)_2Ru(DM-$	$H_2O(0.1M \text{ KH}_2PO_4)$	605	605	0.020	0.84	424
bpy) ²⁺						
$(bpy)_2Ru(DM-$	MeCN:H ₂ O (50:50 v/v)	606	606	0.024	0.95	424
$(bpy)^{2}$						
$[Ru(BTB)Ru]^{2}$	MeCN (TBAPF ₆)	~680	710		0.02	125
$[Ru(4-TBN)Ru]^+$	MeCN (TBAPF ₆)	~680	680		0.075	125
[H ₂ MPy3,4DMPP)	MeCN	655	656	0.04	0.14	120
$Ru(bpy)_2Cl(PF_6)/TP$						
rA		600	6.40			110
$(bpy)_2Ru(DiPA)^{\prime}/T$	0.2M potassium phosphate	~600	640			119
PrA	butter					

1/TprA (Figure E)	0.18M KPB/Triton X-100	607	0.125	1.0	114, ⁰
2/TprA (Figure E)	0.18M KPB/Triton X-100	632	0.112	0.029	114, ⁰
3/TprA (Figure E)	0.18M KPB/Triton X-100	622	0.150	0.091	114, ⁰
4/TprA (Figure E)	0.18M KPB/Triton X-100	627	0.109	1.22	114, ⁰
5/TprA (Figure E)	0.18M KPB/Triton X-100	624	0.135	1.24	114, ⁰
6/TprA (Figure E)	0.18M KPB/Triton X-100	619	0.109	0.089	114, ⁰
7/TprA (Figure E)	0.18M KPB/Triton X-100	637,	0.092	0.56	114, ⁰
		660			
Ru(bpy) ₃ ²⁺ /TPrA	Immobilized in an			100	101
	organosilicate thin film. 0.05 M				
	KPB				
$Ru(bpy)_3^{2+}/Tartaric$	Immobilized in an			8.21	101
Acid	organosilicate thin film. 0.05 M				
	KPB				
$Ru(bpy)_3^{2+}/Ascorbic$	Immobilized in an			4.22	101
acid,	organosilicate thin film. 0.05 M				
2+	KPB				
$Ru(bpy)_3^{2+}/NADH$	Immobilized in an			3.90	101
	organosilicate thin film. 0.05 M				
	KPB			• • •	101
$Ru(bpy)_3^2/L$ -	Immobilized in an			2.39	101
Tryptophan	organosilicate thin film. 0.05 M				
\mathbf{P} (1 \mathbf{Y}^{2+})	KPB			5.01	101
Ru(bpy) ₃ ^{-/}	Immobilized in an			5.01	101
Promazine	organosilicate thin film. 0.05 M				
$\mathbf{D}_{\rm ex}(\mathbf{h}_{\rm exc})^{2+}/\mathbf{O}_{\rm exc}$	KPB			10.7	101
$Ku(0py)_3 / Oxalate$	arganagilizata thin film 0.05 M			10.7	101
$P_{u}(hp_{v})^{2+}$	Immobilized in an			1.57	101
Quinacrine	organosilicate thin film 0.05 M			1.57	101
Quinaerine	KPR				
$Ru(hny)_2^{2+}/I$ -	Immobilized in an			12.0	101
Proline	organosilicate thin film 0.05 M			12.0	101
1 Ionne	KPB				
$Ru(bpy)_{3}^{2+}/TPrA$	Monolayer on benzene sulfonic				425
110(op))) / 11111	acid modified glassy carbon				
	electrode.				
$Ru(bpy)_3^{2+}/TPrA$	Poly(sodium 4-styrene				426
	sulfonate) thin-films.				
Ru(bpy) ₃ ²⁺ /TPrA	Immobilized in Eastman-				427
	AQ55D-silica composite film.				
	0.1M KPB				
$Ru(bpy)_3^{2+}/oxalate$	Immobilized in Eastman-				427
	AQ55D-silica composite film.				
	0.1M KPB				
Ru(bpy) ₃ ²⁺ /chlorpro	Immobilized in Eastman-				427

mazine	AQ55D-silica composite film.			
	0.1M KPB			
$Ru(bpv)_3^{2+}$	Adsorbed on a highly oxidized			428
- (- F <i>J</i>) <i>J</i>	glassy carbon electrode.			-
$Ru(bpv)_3^{2+}$	$Ru(bpy)_{2}^{2+}$ immobilized in			429
100(0)))	Nation coated on a graphite			,
	electrode ECL was generated			
	in aqueous solution upon			
	electrochemical oxidation of			
	water			
$R_{11}(hpv)_2^{2+}$	$Ru(bpy)_2^{2^+}$ doped silica			95
100(0)))	nanoparticles coimmobilized			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	with carbon nanotubes			
$R_{11}(bpv)^{2+}$	Sol-gel titania–Nafion			430
/ervthromycin	composite film placed in			150
/ er y en onry en	human urine			
$R_{\rm II}(\rm hpv)_2^{2+}/TPrA$	Sol_gel titania_Nafion			430
	composite film 0.05 M			450
	phosphate buffer solution at pH			
	7			
$R_{\rm II}(\rm bpv)_2^{2+}/\rm oxalate$	Sol–gel titania–Nafion			430
ru(opj)j /onulute	composite film 0.05 M			150
	phosphate buffer solution at pH			
	7			
$Ru(bpv)_3^{2+}/TPrA$	Encapsulated in sol-gel glass	610	610	92
	for solid-state ECL cell.			
$\mathbf{D}_{\rm res}(\mathbf{h}_{\rm resc})^{2+}/\mathbf{T}\mathbf{D}_{\rm res}$	31.07 11			
$Ku(DPY)_3$ / $IPTA$	Nation–silica composite films			94
Ku(dpy) ₃ / I PrA	Nation–silica composite films using potassium phosphate (pH			94
Ku(opy) ₃ / IPTA	Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate			94
Ku(dpy) ₃ /IPTA	Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers.			94
$Ru(bpy)_3 / IPTA$ $Ru(bpy)_3^{2+}/oxalate$	Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Nation–silica composite films			94
$Ru(bpy)_3 / IPTA$ $Ru(bpy)_3^{2+}/oxalate$	Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Nation–silica composite films using potassium phosphate (pH			94 94 94
$Ru(bpy)_3 / IPrA$ $Ru(bpy)_3^{2+}/oxalate$	Nafion–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Nafion–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate			94 94
$Ru(bpy)_3 / IPTA$ $Ru(bpy)_3^{2+}/oxalate$	Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers.			94 94
$\frac{\text{Ru(bpy)}_3 / 1 \text{PrA}}{\text{Ru(bpy)}_3^{2+}/\text{oxalate}}$	Nation-silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Nation-silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Encapsulated in sol-gel glass in			94 94 94 93
$\frac{\text{Ru(bpy)}_3 / \text{IPrA}}{\text{Ru(bpy)}_3^{2+}/\text{oxalate}}$ $\frac{\text{Ru(bpy)}_3^{2+}}{\text{TPrA}}$	Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Encapsulated in sol–gel glass in pH 6 phosphate buffer.			94 94 93
$\frac{\text{Ru}(\text{bpy})_3 / 1 \text{PrA}}{\text{Ru}(\text{bpy})_3^{2+}/\text{oxalate}}$ $\frac{\text{Ru}(\text{bpy})_3^{2+}/\text{TPrA}}{\text{Ru}(\text{bpy})_3^{2+}/\text{Tributyl}}$	Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Encapsulated in sol–gel glass in pH 6 phosphate buffer. Encapsulated in sol–gel glass in			94 94 93 93
$\frac{\text{Ru(bpy)}_{3}^{2+}/\text{oxalate}}{\text{Ru(bpy)}_{3}^{2+}/\text{TPrA}}$ $\frac{\text{Ru(bpy)}_{3}^{2+}/\text{TPrA}}{\text{Ru(bpy)}_{3}^{2+}/\text{Tributyl}}$ amine	Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Encapsulated in sol–gel glass in pH 6 phosphate buffer. Encapsulated in sol–gel glass in pH 6 phosphate buffer.			94 94 93 93
Ru(bpy) ₃ //IPrA Ru(bpy) ₃ ²⁺ /oxalate Ru(bpy) ₃ ²⁺ /TPrA Ru(bpy) ₃ ²⁺ /Tributyl amine Ru(bpy) ₃ ²⁺ /Triethyl	Nafion–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Nafion–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Encapsulated in sol–gel glass in pH 6 phosphate buffer. Encapsulated in sol–gel glass in pH 6 phosphate buffer. Encapsulated in sol–gel glass in			94 94 93 93 93
Ru(bpy) ₃ // IPrA Ru(bpy) ₃ ²⁺ /oxalate Ru(bpy) ₃ ²⁺ /TPrA Ru(bpy) ₃ ²⁺ /Tributyl amine Ru(bpy) ₃ ²⁺ /Triethyl amine	Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Encapsulated in sol–gel glass in pH 6 phosphate buffer. Encapsulated in sol–gel glass in pH 6 phosphate buffer. Encapsulated in sol–gel glass in pH 6 phosphate buffer.			94 94 93 93 93
Ru(bpy) ₃ // IPrA Ru(bpy) ₃ ²⁺ /oxalate Ru(bpy) ₃ ²⁺ /TPrA Ru(bpy) ₃ ²⁺ /Tributyl amine Ru(bpy) ₃ ²⁺ /Triethyl amine Ru(bpy) ₃ ²⁺ /Trimeth	Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Encapsulated in sol–gel glass in pH 6 phosphate buffer. Encapsulated in sol–gel glass in pH 6 phosphate buffer. Encapsulated in sol–gel glass in pH 6 phosphate buffer. Encapsulated in sol–gel glass in pH 6 phosphate buffer.			94 94 93 93 93 93
Ru(bpy) ₃ //TPrA Ru(bpy) ₃ ²⁺ /oxalate Ru(bpy) ₃ ²⁺ /TPrA Ru(bpy) ₃ ²⁺ /Tributyl amine Ru(bpy) ₃ ²⁺ /Triethyl amine Ru(bpy) ₃ ²⁺ /Trimeth ylamine	Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Encapsulated in sol–gel glass in pH 6 phosphate buffer. Encapsulated in sol–gel glass in pH 6 phosphate buffer. Encapsulated in sol–gel glass in pH 6 phosphate buffer. Encapsulated in sol–gel glass in pH 6 phosphate buffer.			94 94 93 93 93 93 93
Ru(bpy) ₃ // IPrA Ru(bpy) ₃ ²⁺ /oxalate Ru(bpy) ₃ ²⁺ /TPrA Ru(bpy) ₃ ²⁺ /Tributyl amine Ru(bpy) ₃ ²⁺ /Triethyl amine Ru(bpy) ₃ ²⁺ /Triethyl amine Ru(bpy) ₃ ²⁺ /Trimeth ylamine Ru(bpy) ₃ ²⁺ /oxalate	Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Encapsulated in sol–gel glass in pH 6 phosphate buffer. Encapsulated in sol–gel glass in pH 6 phosphate buffer.			94 94 93 93 93 93 93 93
Ru(bpy) ₃ // IPrA Ru(bpy) ₃ ²⁺ /oxalate Ru(bpy) ₃ ²⁺ /TPrA Ru(bpy) ₃ ²⁺ /Tributyl amine Ru(bpy) ₃ ²⁺ /Triethyl amine Ru(bpy) ₃ ²⁺ /Trimeth ylamine Ru(bpy) ₃ ²⁺ /oxalate	Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Encapsulated in sol–gel glass in pH 6 phosphate buffer. Encapsulated in sol–gel glass in pH 6 phosphate buffer.			94 94 93 93 93 93 93 93 93 93 93 93 93
Ru(bpy) ₃ //TPrA Ru(bpy) ₃ ²⁺ /oxalate Ru(bpy) ₃ ²⁺ /TPrA Ru(bpy) ₃ ²⁺ /Tributyl amine Ru(bpy) ₃ ²⁺ /Triethyl amine Ru(bpy) ₃ ²⁺ /Trimeth ylamine Ru(bpy) ₃ ²⁺ /Oxalate Ru(bpy) ₃ ²⁺ /TPrA	Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Encapsulated in sol–gel glass in pH 6 phosphate buffer. Encapsulated in sol–gel glass in pH 6 phosphate buffer.			94 94 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93
Ru(bpy) ₃ //TPrA Ru(bpy) ₃ ²⁺ /Oxalate Ru(bpy) ₃ ²⁺ /TPrA Ru(bpy) ₃ ²⁺ /Tributyl amine Ru(bpy) ₃ ²⁺ /Triethyl amine Ru(bpy) ₃ ²⁺ /Trimeth ylamine Ru(bpy) ₃ ²⁺ /Oxalate Ru(bpy) ₃ ²⁺ /TPrA	Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Nation–silica composite films using potassium phosphate (pH 6, 7, 8) or potassium acetate (pH 4, 5, 6) buffers. Encapsulated in sol–gel glass in pH 6 phosphate buffer. Encapsulated in sol–gel glass in pH 6 phosphate buffer.			94 94 93

2			
Ru(bpy) ₃ ²⁺ /TPrA	Carbon nanotubes incorporated	60	432, ^q
	in Nafion film at a glassy		
	carbon electrode in 0.1 M		
	phosphate buffer solution (pH		
	7.5).		
$Ru(bpv)_3^{2+}/TPrA$	$Clav nanoparticle/Ru(bpv)_{3}^{2+}$		433
- (- F <i>J</i>) <i>J</i> · ·	films on ITO electrodes in		
	phosphate buffer solution (pH		
	7 5)		
$R_{\rm II}({\rm hpv})_2^{2+}/{\rm oxalate}$	Clay nanoparticle/Ru(bpy) $^{2+}$		432
rea(opy); /oxulate	films on ITO electrodes in		152
	nhosphate buffer solution (nH		
	7 5)		
$P_{u}(hp_{v})^{2+}/TP_{r}$	SiO papapartialog/ $Pu(hpy)^{2+}$		121
Ku(opy)3 /IFIA	SIO_2 halloparticles/Ku(opy) ₃		434
	TDA in ab a sub at a huffen (all		
	1PA in phosphate buller (pH		
$D(1) 2^{+}(1)$	8.2).		125
Ru(bpy) ₃ /oxalate	$\operatorname{Ru}(\operatorname{bpy})_3^2$ embedded in silica-		435
$D (1) > 2^{+} (-1)$	glass thin films.		12.6
$Ru(bpy)_3^2/oxalate$	Immobilized in SiO ₂ sol–gel		436
	polymer composites with 50		
	mM Na ₂ C ₂ O ₄ in H ₂ O at pH =		
2	6.0		
$Ru(bpy)_3^{2+}$	Immobilized in SiO ₂ sol–gel	0.016-	436,
	polymer composites with 0.1 M	0.001	
	$[N(n-C_4H_9)_4]PF_6$ in MeCN.	2	
Ru(bpy) ₃ ²⁺ /TPrA	Platinum silicide electrodes		437
	with $Ru(bpy)_3^{2+}$ covalently		
	bonded either directly or via		
	single stranded DNA.		
$Ru(bpy)_3^{2+}/TPrA$	Humic acid-silica-poly(vinyl		438
	alcohol) sol-gel composite		
	films on glassy carbon		
	electrodes.		
$Ru(bpv)_3^{2+}/oxalate$	Humic acid–silica–polv(vinvl		438
-(- F <i>J</i>) <i>J</i>	alcohol) sol-gel composite		
	films on glassy carbon		
	electrodes		
$R_{\rm II}(\rm bpv)_2^{2+}/\rm oxalic$	$R_{\rm II}(\rm bpy)_{2}^{2+}$ - Chitosan coated on		439
acid	a platinum electrode		159
$R_{\rm II}({\rm hpv})_2^{2+}/{\rm trimethv}$	$R_{11}(hpv)_{2}^{2+}$ - Chitosan coated on		439
lamine	a platinum electrode		159
$R_{\rm H}(h_{\rm DV})^{2+}/N\Lambda DH$	Detection of ethanol by		440
Kulopy 3 /MADII	immobilizing Ru(bry) ²⁺ and		עדד
	alaphal dahudraganasa in a sal		
	al hybrid film		
$D_{-1}(1,, 1) \frac{2+}{2}$		4200	441 S
KU(DDY) ₃ /IPrA	immobilized in poly(p-	4300	441,

	stamon analfan ata) (DCC) ailian			
	styrenesulionate) (PSS) silica			
	Inton X-100 composite films			
	in 0.1 M phosphate buffer (pH			
	7.0).		 	
$Ru(bpy)_3^2'/oxalate$	Immobilized in poly(<i>p</i> -		350	441,*
	styrenesulfonate) (PSS) silica			
	Triton X-100 composite films			
	in 0.1 M phosphate buffer (pH			
	7.0).			
Ru(bpy) ₃ ²⁺ /NADH	Immobilized in poly(<i>p</i> -		76	441, ^s
	styrenesulfonate) (PSS) silica			
	Triton X-100 composite films			
	in 0.1 M phosphate buffer (pH			
	7.0).			
$Ru(bpy)_3^{2+}/Histidin$	Immobilized in poly(<i>p</i> -		17	441, ^s
e	styrenesulfonate) (PSS) silica			,
	Triton X-100 composite films			
	in 0.1 M phosphate buffer (pH			
	7.0).			
Ru(bpv) ₃ ²⁺ /Threoni	Immobilized in poly(<i>p</i> -		2	441. ^s
ne	styrenesulfonate) (PSS) silica			,
	Triton X-100 composite films			
	in 0.1 M phosphate huffer (pH			
	70			
Ru(bpy) ₃ ²⁺ /Asparagi	Immobilized in poly(<i>p</i> -		5	441 ^s
ne	styrenesulfonate) (PSS) silica			,
	Triton X-100 composite films			
	in 0.1 M phosphate buffer (pH			
	70)			
$R_{11}(hnv)_{2}^{2+}/Arginine$	Immobilized in poly(<i>p</i> -		44	441 ^s
rea(opy); // inginine	styrenesulfonate) (PSS) silica			111,
	Triton X-100 composite films			
	in 0.1 M phosphate huffer (pH			
$B_{11}(hny)^{2+}/Tyrosine$	Immobilized in $poly(n_{-})$		 7	1/1 ⁸
Ru(opy)3 / Tyrosine	styrenesulfonate) (PSS) silica		/	TT 1,
	Triton V 100 composite films			
	in 0.1 M phosphoto buffor (pH			
Bu(bpy), ²⁺ /Phonylal	7.0). Immobilized in poly(n		0	441 ^s
ining	$f_{\text{anti-bounded}}$ (DSS) silico		9	441,
	Triton V 100 composite films			
	in 0.1 M phosphoto buffor (all			
	110.1 W phosphate buller (pH 7.0)			
Du(boy) ²⁺ /Lectorei	1.0). Immobilized in poly(n	$\left \right $	 16	111 ^S
Ku(opy) ₃ /Laciami	$\frac{111111001112eu 111 poly(p-1)}{2eu 111 poly(p-1)}$		10	441,
ne	styrenesulionate) (PSS) silica			
	1 riton X-100 composite films			

	in 0.1 M phosphate buffer (pH				
Ru(bpy) ₃ ²⁺ /Proline	Immobilized in poly(<i>p</i> - styrenesulfonate) (PSS) silica Triton X-100 composite films in 0.1 M phosphate buffer (pH			784	441, ^s
Ru(bpy) ₃ ²⁺ /TPrA	7.0). PtNPs/AQ/Ru(bpy) $_3^{2+}$ colloidal material in aqueous buffered solution.				98
Ru(bpy) ₃ ²⁺ /TPrA	PtNPs/Ru(bpy) ₃ ²⁺ thin films on gold electrode.				99
$\frac{\left[\operatorname{Ru}(\operatorname{bpy})_2(\operatorname{PVP})_{10}\right]^{2+}}{/\operatorname{TPrA}}$	Solution phase ECL in DMF, 0.1M TPrA.		0.9	0.019	90, ^t
$\frac{[Ru(bpy)_2(PVP)_{10}]^{2^+}}{/S_2O_8^{2^-}}$	Solution phase ECL in 80:20 DMF:H ₂ O, 0.1M Na ₂ S ₂ O ₈ .		0.9	0.040	90, ^t
[Ru(bpy) ₂ (PVP) ₁₀] ²⁺ /oxalate	Redox polymer immobilized on surface of glassy carbon working electrode. 5 mM oxalate/0.1M H ₂ SO ₄			0.152	90, ^t
Ru(bpy) ₃ ²⁺ /TPrA	Electrostatic interaction between $Ru(bpy)_3^{2+}$ -gold nanoparticle aggregates, and then immobilization of the aggregates on a sulfydryl- derivatized ITO electrode. 0.5M TPrA in 50 mM KPB.				91
Ru(bpy) ₃ ²⁺ /berberin e	Immobilized in organically modified silicate films on glassy carbon electrode. Alkaline buffer solution at pH 9.5.	610			130
Ru(bpy) ₃ ²⁺ /trigonell ine	Immobilized in organically modified silicate films on glassy carbon electrode. Alkaline buffer solution at pH 9.5.	610			130
Ru(bpy) ₃ ²⁺ /allantoin	Immobilized in organically modified silicate films on glassy carbon electrode. Alkaline buffer solution at pH 9.5.	610			130
Ru(bpy) ₃ ²⁺ /bentaine	Immobilized in organically modified silicate films on glassy carbon electrode. Alkaline buffer solution at pH 9.5.	610			130

Ru(bpy) ₃ ²⁺ /pirimica	$Ru(bpy)_3^{2^+}$ adsorbed on multi-					129
rb	walled carbon nanotube/nafion					
	film-modified electrode.					
$Ru(bpy)_3^{2+}/methom$	$Ru(bpy)_3^{2^+}$ adsorbed on multi-					129
yl	walled carbon nanotube/nafion					
	film-modified electrode.					
$Ru(bpy)_3^{2+}/aldicarb$	$Ru(bpy)_3^{2^+}$ adsorbed on multi-					129
	walled carbon nanotube/nafion					
	film-modified electrode.					
$Ru(bpy)_3^{2+}/carbofur$	$Ru(bpy)_3^{2+}$ adsorbed on multi-					129
an	walled carbon nanotube/nafion					
	film-modified electrode.					
$Ru(bpy)_3^{2+}/NADH$	$Ru(bpy)_3^{2+}$ and alcohol					96
	dehydrogenase immobilized in					
	sol-gel/chitosan/poly(sodium 4-					
	styrene sulfonate) on glassy					
	carbon electrode. 0.1 M					
	phosphate buffer.					
RuTPh	MeCN/0.1M TBAPF ₆	690	740	7.2 ¹	15 ¹	442
Ru(4TPZ)	MeCN/0.1M TBAPF ₆	690	690	7.4 ¹	75 ¹	442
Ru(4TBN)	MeCN/0.1M TBAPF ₆	670,	730	5.7 ¹	15 ¹	442
	0	700			_	
Ru(4TBN)Me	MeCN/0.1M TBAPF ₆	660	720	11.6 ¹	45 ¹	442
Ru(4TBN)Ru	MeCN/0.1M TBAPF ₆	670,	690	15.3 ¹	120 ¹	442
		700				
Ru(BTB)Ru	MeCN/0.1M TBAPF ₆	690	700	9.0 ¹	45 ¹	442
$(Et_4N)[Ru(tpvA_{18}C_6]$	acetone	765			_	134
$(CN)_{3}$ (tpvA ₁₈ C ₆ =						
N-[4'-(2.2':6'.2"-						
terpyridyl)]-						
1.4.7.10.13-						
pentaoxa-16-						
azacvclohexadodeca						
ne)						
$(Et_4N)[Ru(tpvA_{18}C_6]$	Pvridine	760				134
$(CN)_{3}$ (tpvA ₁₈ C ₆ =		,				10.
N-[4'-(2.2':6'.2"-						
terpvridvl)]-						
1.4.7.10.13-						
pentaoxa-16-						
azacyclohexadodeca						
ne)						
$(Et_4N)[Ru(tpvA_{18}C_6]$	DMF	755				134
$(CN)_{3}$ (tpvA ₁₈ C ₆ =		_				
N-[4'-(2,2':6',2"-						
terpyridyl)]-						
1,4,7,10,13-						

pentaoxa-16- azacyclohexadodeca			
$\begin{array}{l} \text{(Et}_{4}\text{N})[\text{Ru}(\text{tpyA}_{18}\text{C}_{6} \\ \text{)}(\text{CN})_{3}](\text{tpyA}_{18}\text{C}_{6} = \\ \text{N}-[4'-(2,2':6',2''- \\ \text{terpyridyl})]- \\ 1,4,7,10,13- \\ \text{pentaoxa-16-} \\ \text{azacyclohexadodeca} \\ \text{ne}) \end{array}$	MeCN	740	134
$(Et_4N)[Ru(tpyA_{18}C_6)(CN)_3](tpyA_{18}C_6 = N-[4'-(2,2':6',2"-terpyridyl)]-1,4,7,10,13-pentaoxa-16-azacyclohexadodeca ne)$	CH ₂ Cl ₂	730	134
$(Et_4N)[Ru(tpyA_{18}C_6)(CN)_3] (tpyA_{18}C_6 = N-[4'-(2,2':6',2''-terpyridyl)]-1,4,7,10,13-pentaoxa-16-azacyclohexadodeca ne)$	Propanol	685	134
$(Et_4N)[Ru(tpyA_{18}C_6)(CN)_3](tpyA_{18}C_6 = N-[4'-(2,2':6',2"-terpyridyl)]-1,4,7,10,13-pentaoxa-16-azacyclohexadodeca ne)$	EtOH	675	134
$(Et_4N)[Ru(tpyA_{18}C_6)(CN)_3](tpyA_{18}C_6 = N-[4'-(2,2':6',2''-terpyridyl)]-1,4,7,10,13-pentaoxa-16-azacyclohexadodeca ne)$	МеОН	645	134

Notes: Ligand abbreviations are listed at the end of the article in section 6. Coreactants are listed after the backslash (e.g., $Ru(bpy)_3^{2+}/TPrA$ where TPrA is the coreactant). If no coreactant is listed then ECL was

generated via annihilation. In certain instances annihilation ECL was generated using cross-reactions between two different species (e.g., equations 17 - 20). In those cases the cross-reactant is listed after the backslash and the reaction identified with (Cross-R). The spectrostopic and ECL data listed was either reported directly in the cited paper, or was extrapolated from data. In those instances where no ECL spectra and/or efficiencies were reported only the compound, conditions and reference are listed. Photoluminescence efficiencies (ϕ_{em}) and ECL efficiencies (ϕ_{em}) are relative to Ru(bpy)₃²⁺ at 0.062 and 0.05, respectively, unless otherwise noted. a) Volts vs Fc/Fc^+ (0.631 V vs NHE). b) Relative to diphenylanthracene ($\phi_{ecl} = 6.3\%$). c) Relative ECL efficiency with respect to Ru(bpy)₃²⁺/Coreactant ($\phi_{ecl} = 6.3\%$). 1). d) weak ECL such that no spectrum was obtained. e) ECL generated via cross-reaction between Mo_6Cl_{14} and electroactive donor species (D; nitroaromatic radical anions). f) ECL generated via cross reaction between $Mo_6Cl_{14}^{3-}$ and electroactive acceptor species (A⁺; aromatic amine radical cations). g) relative to Cr(bpy)₃(ClO₄)₂. h) assigned a value of 1.0 for comparison purposes. i) set to 1.0 for comparison to CE-bpy in MeCN. Relative ϕ_{ecl} vs Ru(bpy)₃²⁺/TPrA not reported. j) relative to CE-bpy in $H_2O(\phi_{ecl} = 1)$. k) Set to 1.0 for comparison with Den-8-Ru. l) relative to $(bpy)_2Ru(bpy-O-C_8)^{2+}$ at 1.0. l) $[SiPc(OR)_2] = bis(tri-n-hexylsiloxy)(2,3-phthalocyaninato)silicon; RO(SiPcO)_2R = dimer of [SiPc(OR)_2];$ $[SiNc(OR)_2] = bis(tri-n-hexylsiloxy)(2,3-naphthalocyaninato)silicon. l) Relative to Ru(bpy)_3^{2+} at 100\%$. m) For Boron complexes, ϕ_{em} relative to PM 567 as a standard (0.87 in MeCN). n) relative to fluorescine 27 in 0.1 N NaOH (0.90 ± 0.03). O) ϕ_{em} relative to Ru(bpy)₃²⁺ in MeCN (0.067). p) ϕ_{ecl} relative to $Ru(bpy)_3^{2+}/TPrA$ as 100%. q) ϕ_{ecl} relative to $Ru(bpy)_3^{2+}/TPrA$ ($\phi_{ecl} = 1$) adsorbed in a Nafion Coated glassy carbon electrode. r) ITO/[Ru(bpy)₃]²⁺ (MeCN, 0.1 M in TBAH) as a standard, with $\phi_{ecl} = 0.05$. s) ECL Intensity (arbitrary Units). t) ϕ_{em} relative to Ru(bpy)₃²⁺ at 0.062. ϕ_{ecl} relative to Ru(bpy)₃²⁺ / TPrA as 5.0%.