Supplementary Material (ESI) for Photochemical & Photobiological Sciences This journal is © The Royal Society of Chemistry and Owner Societies 2004

Photophysics of Pyrene-labelled Compounds of Biophysical Interest

by

Chunxiang Yao, Heinz-Bernard Kraatz and Ronald P. Steer*

Synthesis of Compounds 4 - 12

Synthesis and Characterization of Py-(CH_2)_n NH-CO- C_2H_5 (n = 0 (4), n = 1 (8)): Solid HOBt (0.09 g, 0.6 mmol) and EDC (0.12 g, 0.6 mmol) were added successively to a 50 ml well-stirred CH₂Cl₂ solution of propionic acid (40µl, 0.5 mmol) in an ice-water bath at 0 °C. After 30 minutes, a solution of 1-aminopyrene (0.13 g, 0.6 mmol) treated by excess Et₃N in 20 ml CH₂Cl₂ was added into this reaction mixture. TLC was performed to monitor the progress of the reaction. The reaction solution was stirred vigorously in the dark overnight, at room temperature. Then, the reaction mixture was extracted consecutively with aqueous saturated NaHCO₃, 10% citric acid, saturated NaHCO₃ and distilled water (100 ml for each aqueous wash). The organic phase was dried over anhydrous Na₂SO₄ and then evaporated to dryness. After purification by FCC (SiO₂,

Supplementary Material (ESI) for Photochemical & Photobiological Sciences This journal is © The Royal Society of Chemistry and Owner Societies 2004 hexane/EtOAc 1:1, $R_f = 0.44$), compound **4** (0.09 g, 64%) was obtained as a yellow solid. Elem. anal. calc. for $C_{19}H_{25}NO$: C, 83.52; H, 5.49; N, 5.13; found: C, 83.25; H, 5.42; N, 5.13 %. HRMS (FAB-EI+) m/z for $C_{19}H_{25}NO$: calc. 273.1154, found 273.1157 (M⁺). ¹H-NMR (δ in ppm, CDCl₃): 8.19-8.02 (9H, m, CH of Py), 7.78 (1H, br, s, NH close to Py), 2.65, (2H, J = 7.5 Hz, CH₂), 1.42 (3H, t, J = 6.9 Hz, CH₃).

For compound **8**: Amounts: Propionic acid (75 µl, 1.0 mmol), HOBt (0.18 g, 1.2 mmol), EDC (0.23 g, 1.2 mmol), 1-pyrenemethylamine hydrochloride (0.29 g, 1.1 mmol). (hexane/ EtOAc/ MeOH 2: 0.5: 0.5, $R_f = 0.34$). Yellow solid, yield: 0.17 g (60 %). HRMS (FAB-EI+) m/z for C₂₀H₁₇NO: calc. 287.1310, found 287.1307 (M⁺). ¹H-NMR (δ in ppm, CDCl₃): 8.24-7.78 (9H, m, CH of Py), 5.76 (1H, br, NH), 5.15 (2H, d, *J* = 5.4 Hz, CH₂ close to Py), 2.25 (2H, q, *J* = 7.5 Hz, CH₂ close to C=O), 1.19 (3H, t, *J* = 7.5 Hz, CH₃). ¹³C{¹H}-NMR (δ in ppm, CDCl₃): 173.6 (C=O), 131.4, 120.9, 129.2, 128.4, 127.7, 127.5, 127.4, 126.3, 125.6, 125.5, 124.9, 123.0 (C, CH of Py), 42.2 (CH₂ linking to Py), 29.9 (CH₂ close to C=O), 10.1 (CH₃).

Synthesis and Characterization of $Py-(CH_2)_n$ -CO-Leu-Boc (n = 0 (6), n = 1 (10): To a well-stirred solution of Boc-Leu-OH (0.12 g, 0.5 mmol), HOBt (0.1 g, 0.6 mmol) and EDC (0.12 g, 0.6 mmol) in 50 ml CH₂Cl₂ at 0°C, was added a solution of 1-aminopyrene

Supplementary Material (ESI) for Photochemical & Photobiological Sciences This journal is © The Royal Society of Chemistry and Owner Societies 2004

(0.13 g, 0.6 mmol) in 20 ml CH₂Cl₂. The mixture was stirred in the dark at room temperature overnight, followed by an aqueous work up described above. The crude product was purified by column chromatography (SiO₂, hexane/ EtOAc 3: 1, R_f = 0.46) to give compound **6** as a yellow solid in 41% yield (0.09 g, 41%). Elem. Anal.: calc. for C₂₇H₃₀N₂O₃·(0.5 CH₃COOC₂H₅): C, 73.42; H, 7.17; N, 5.91; found: C, 73.95; H, 6.76; N, 6.43 %. HRMS (FAB-EI+) m/z for C₂₇H₃₀N₂O₃: calc. 430.2256, found 430.2259 (M⁺). ¹H-NMR (δ in ppm, CDCl₃): 9.06 (1H, br, NH close to Py), 8.51-7.96 (9H, m, CH of Py), 5.06 (1H, d, *J* = 6.6 Hz, NH of Leu), 4.48 (1H, m, CH^{α} of Leu), 2.04-1.66 (3H, m, CH₂^{β} and CH^{γ} of Leu), 1.55 (9H, br, s, 3CH₃ of Boc), 1.06 (6H, t, *J* = 6.0 Hz, 2CH₃^{δ} of Leu). ¹³C {¹H}-NMR (δ in ppm, CDCl₃): 172.6, 156.8 (2 C=O), 131.2, 130.7, 130.2, 128.9, 127.5, 127.1, 126.6, 125.9, 125.2, 124.8, 124.7, 124.4, 123.7, 122.2, 120.7 (C, CH of Py), 80.5 (C of Boc), 54.0 (CH^{α} of Leu), 41.1 (CH₂^{β} of Leu), 28.8 (3CH₃ of Boc), 25.2, 23.3 (2CH₃^{δ} of Leu), 22.5 (CH^{γ} of Leu).

For Compound **10**: Amounts: 1-pyrenemethylamine hydrochloride (0.29 g, 1.1 mmol), Boc-Leu-OH (0.23g, 1.0 mmol), HOBt (0.17 g, 1.1 mmol), EDC (0.21 g, 1.1 mmol). Column chromatography: SiO₂, CH₂Cl₂/ EtOAc 3: 0.5, R_f = 0.43. Yield: yellow solid (0.36 g, 82 %). Elem. Anal. calc. for C₂₈H₃₂N₂O₃·(0.5 CH₃COOC₂H₅): C 73.77, H 7.37, N 5.74; found C 73.76, H 7.18, N 6.30 %. HRMS (FAB-EI+) m/z for C₂₈H₃₂N₂O₃: calc. 444.2413, found 444.2407 (M⁺). ¹H-NMR (δ in ppm, CDCl₃): 8.17-7.95 (9H, m, CH of Py), 6.54 (1H, br, NH close to Py), 5.13 (2H, d, J = 4.8 Hz, CH₂ close to Py), 4.84 (1H, br, NH of Leu), 4.11 (1H, m, CH^α of Leu), 1.78-1.43 (3H, m, CH₂^β and of CH^γ Leu), 1.29 (9H, br, s, CH₃ of Boc), 0.90 (6H, d, J = 6.0 Hz, CH₃^δ of Leu). ¹³C {¹H}-NMR (δ in ppm, CDCl₃): 173.0, 156.0 (2 C=O), 131.3, 131.1, 131.0, 130.8, 128.8, 128.0, 127.4,

Supplementary Material (ESI) for Photochemical & Photobiological Sciences This journal is © The Royal Society of Chemistry and Owner Societies 2004

126.6, 126.0, 125.3, 124.9, 124.8, 122.8 (C, CH of Py), 80.0 (C of Boc), 53.5 (CH^{α} of Leu), 41.7, 41.7 (CH₂ linking to Py and CH₂^{β} of Leu), 28.5 (CH₃ of Boc), 25.0, 23.1 (2CH₃^{δ} of Leu), 22.3 (CH^{γ} of Leu).

Synthesis and Characterization of Py-(CH_2)_n CO-NH-C₃H₇ (n = 0 (5), n = 1 (9): 1pyrenecarboxylic acid (0.25 g, 1.0 mmol), HOBt (0.17 g, 1.1 mmol) and EDC (0.21 g, 1.1 mmol) were added to 50 ml CH₂Cl₂. *N*-propylamine (100 µl, 1.2 mmol) was dissolved in 20 ml CH₂Cl₂, and added into the reaction mixture and stirred overnight. The work up procedure was identical to that described for compound **4**. The organic residue was then purified by FCC (SiO₂, hexane/ EtOAc/ MeOH 4: 1.5: 0.5, R_f = 0.46) to give compound **5** as a yellow solid. Yield: 0.14 g (48 %). HRMS (FAB-EI+) m/z for C₂₀H₁₇NO: calc. 287.1310, found 287.1306 (M⁺). ¹H-NMR (δ in ppm, CDCl₃): 8.50-7.95 (9H, m, CH of Py), 6.25 (1H, br.s, NH), 3.56 (2H, q, J = 6.3, 13.2 Hz, CH₂ close to NH), 1.75 (2H, m, CH₂ close to CH₃), 1.10 (3H, t, J = 7.4 Hz, CH₃). ¹³C{¹H}-NMR (δ in ppm, CDCl₃): 170.2 (C=O), 132.5, 131.6, 131.3, 130.9, 128.7, 127.3, 126.5, 125.9, 125.8, 124.9, 124.5 (C, CH of Py), 42.2, 23.3 (2 CH₂), 11.8 (CH₃).

For compound **9**: Amounts: 1-pyreneacetic acid (0.26 g, 1.0 mmol), HOBt (0.17 g, 1.1 mmol), EDC (0.21 g, 1.1 mmol), *N*-propylamine (100 μ l, 1.2 mmol). Purification by column chromatography: SiO₂, hexane/ EtOAc 1: 1, R_f = 0.24). Yield: yellow solid,

Supplementary Material (ESI) for Photochemical & Photobiological Sciences This journal is © The Royal Society of Chemistry and Owner Societies 2004 71 % yield; 0.21g. Elem. Anal. calc. for C₂₁H₁₉NO: C, 83.72; H, 6.31; N, 4.65; found: C, 83.79; H, 5.96; N, 4.44 %. HRMS (FAB-EI+) m/z for C₂₁H₁₉NO: calc. 301.1467, found 301.1469 (M⁺). ¹H-NMR (δ in ppm, CDCl₃): 8.20-7.92 (9H, m, CH of Py), 5.23 (1H, br., NH), 4.30 (2H, s, CH₂ close to Py), 3.09 (2H, q, *J* = 6.6, 13.8 Hz, CH₂ close to NH), 1.27 (2H, m, CH₂ close to CH₃), 0.66 (3H, t, *J* = 7.2, 7.5 Hz, CH₃). ¹³C {¹H}-NMR (δ in ppm, CDCl₃): 171.2 (C=O), 131.5, 131.1, 131.0, 129.7, 128.8, 128.7, 128.4, 127.7, 127.5, 126.4, 125.7, 125.6, 125.2, 124.8, 123.2 (C, CH of Py), 42.2 (CH₂), 41.6 (CH₂), 22.9 (CH₂), 11.4 (CH₃).

Synthesis and Characterization of Preparation of Py-(CH₂)_n-CO-NH-Leu-OMe (n = 0 (7), n = 1 (11), n = 3 (12): To a well-stirred solution of 1-pyrenecarboxylic acid (0.25 g, 1.0 mmol) in 50 ml CH₂Cl₂, was added HOBt (0.17 g, 1.1 mmol) and EDC (0.21 g, 1.1 mmol). After 30 minutes, a solution of H-Leu-OMe·HCl (0.20 g, 1.1 mmol) treated with NEt₃ (0.5 mL) in CH₂Cl₂ (10 mL) was added to the reaction mixture. After stirring overnight, the reaction mixture was worked up using the same procedure as described

Supplementary Material (ESI) for Photochemical & Photobiological Sciences This journal is © The Royal Society of Chemistry and Owner Societies 2004 above, followed by purification by (SiO₂, hexane/ EtOAc 3: 1, $R_f = 0.35$). Compound 7 was obtained as a yellow solid in 57 % yield (0.21 g). Elem. Anal. calc. for C₂₄H₂₃NO₃: C, 77.21; H, 6.17; N, 3.75; found: C, 76.99; H, 5.96; N, 3.82 %. HRMS (FAB-EI+) m/z for C₂₄H₂₃NO₃: calc. 373.1678, found 373.1679 (M⁺). ¹H-NMR (δ in ppm, CDCl₃):8.21-8.06 (9H, m, CH of Py), 6.51 (1H, d, J = 8.7 Hz, NH of Leu), 5.06 (1H, m, CH^{α} of Leu), 3.84 (3H, s, OCH₃), 1.88-1.71 (3H, m, CH₂^{β} and CH^{γ} of Leu), 1.10, 1.03 (3H, 3H, d, d, J= 6.0, 6.0 Hz, 2 CH₃^{δ} of Leu).¹³C {¹H}-NMR (δ in ppm, CDCl₃): 173.9, 170.0 (2C=O), 132.9, 131.3, 130.9, 130.5, 129.0, 128.9, 127.3, 126.5, 126.0, 125.9, 124.9, 124.6, 124.4 (C, CH of Py), 52.9 (CH^{α} of Leu), 51.7 (OCH₃), 41.9(CH₂^{β} of Leu), 25.4 (CH^{γ} of Leu), 23.2, 22.3 (2 CH^{δ} of Leu).

For compound **11**: Amounts: 1-pyreneacetic acid (0.26 g, 1.0 mmol), HOBt (0.17 g, 1.1 mmol), EDC (0.21 g, 1.1 mmol), H-Leu-OMe·HCl (0.20 g, 1.1 mmol). CH₂Cl₂/ EtOAc 3:0.5, R_f = 0.39. Yellow solid. Yield: 62 %, 0.24 g. Elem. Anal. calc. for C₂₅H₂₅NO₃: C, 77.52; H, 6.46; N, 3.62; found: C, 77.41; H, 6.45; N, 3.30 %. HRMS (FAB-EI+) m/z for C₂₅H₂₅NO₃: calc. 387.1834, found 387.1835 (M⁺). ¹H-NMR (δ in ppm, CDCl₃):8.20-7.96 (9H, m, CH of Py), 5.59 (1H, d, J =7.2 Hz, NH), 4.62 (1H, m, CH of Leu close to NH), 4.33 (2H, d, J = 4.5 Hz, CH₂ near Py), 3.65 (3, s, OCH₃), 1.46-1.19 (3H, m, CH₂^β and CH^γ of Leu), 0.76, 0.67 (3H, 3H, d, d, J = 6.3, 6.4 Hz, 2CH₃^δ of Leu). ¹³C{¹H}-NMR (δ in ppm, CDCl₃): 173.4, 171.1 (2 C=O), 131.5, 131.2, 131.0, 128.6, 128.4, 128.3, 127.7, 127.5, 126.3, 125.6, 125.5, 125.3, 124.8, 123.3 (C, CH of Py), 52.4 (CH^α of Leu), 51.1 (OCH₃), 41.8, 41.3 (CH₂ near Py and CH₂^β of Leu), 25.0 (CH^γ of Leu). Supplementary Material (ESI) for Photochemical & Photobiological Sciences This journal is © The Royal Society of Chemistry and Owner Societies 2004

For compound **12**: Amounts: 1-pyrenebutyric acid (0.29 g, 1.0 mmol), HOBt (0.17 g, 1.1 mmol), EDC (0.21 g, 1.1 mmol), H-Leu-OMe·HCl (0.20 g, 1.1 mmol). hexane/ EtOAc/ MeOH 2:0.5:0.5, $R_f = 0.67$. Yellow solid. Yield: 37 %, 0.15 g. Elem. anal. calc. for $C_{27}H_{29}NO_3$: C, 78.07; H, 6.99; N, 3.37; found: C, 77.86; H, 7.08; N, 3.49 %. HRMS (FAB-EI+) m/z for $C_{27}H_{29}NO_3$: calc. 415.2147, found 415.2149 (M^+). ¹H-NMR (δ in ppm, CDCl₃):8.15-7.80 (9H, m, CH of Py), 5.84 (1H, d, J = 8.1 Hz, NH of Leu), 4.69 (1H, m, CH of Leu), 3.73 (3H, s, OCH₃), 3.40 (2H, t, J = 6.6, 7.2 Hz, CH₂ linked to Py), 2.36-2.22 (4H, m, 2 CH₂ close to Py), 1.69-1.48 (3H, m, CH₂^{β} and CH^{γ} of Leu), 0.94 (6H, dd, J = 6.3, 7.2 Hz, 2CH₃^{δ} of Leu). ¹³C{¹H}-NMR (δ in ppm, CDCl₃): 174.0, 172.9 (2 C=O), 136.1, 131.6, 131.1, 130.1, 129.0, 127.7, 127.6, 127.0, 126.1, 125.3, 125.1, 125.0, 125.0, 123.6 (C, CH of Py), 52.5, 50.9 (CH^{α} of Leu and OCH₃), 41.8, 36.0, 32.9, 27.6 (CH₂), 25.2 (CH^{γ} of Leu), 23.1, 22.2 (2CH₃^{δ} of Leu).