Donor-substituted Phenyl- π -chromones: Electrochemiluminescence

and Intriguing Electronic Properties

Shu-Wen Yang, Arumugasamy Elangovan and Tong-Ing Ho*

Department of Chemistry National Taiwan University, Taipei – 106, Taiwan.

*Corresponding author. E-mail: hall@ntu.edu.tw

Electronic Supplementary Information

Characterization Data for compounds, UV and fluorescence spectra, and CV curves for **1-5** are furnished below. A comparative ECL and PL spectra and the X-ray crystallographic data of **4** are also appended at the end.

3-Phenylethynyl-chromen-4-one (1): m.p.: 150 - 153 °C ¹H-NMR (δ , ppm): 8.26 (d, J = 8 Hz, 1H), 8.22 (s, 1H), 7.67 (t, J = 8 Hz, 1H), 7.55 (m, 2H), 7.46 (d, J = 8.4 Hz, 1H), 7.42 (t, J = 8 Hz, 1H), 7.32 (m, 3H); ¹³C NMR (δ): (100 MHz,CDCl₃): δ 79.43, 94.95, 111.28, 118.09, 112.49, 123.41, 125.62, 126.11, 128.14, 128.50, 131.66, 133.85, 155.72, 157.69, 175.12; Mass Spectra (m/z): 246.0682 (M⁺).

3-*p***-Tolylethynyl-chromen-4-one** (**2**): m.p.: 136 – 138 °C; ¹H NMR (δ, ppm): 8.26 (d, *J* = 8 Hz, 1H), 8.20 (s, 1H), 7.67 (t, *J* = 8 Hz, 1H), 7.43 (m, 4H), 7.13 (d, *J* = 8.4 Hz, 2H), 2.34 (s, 3H); ¹³C NMR (δ): (100 MHz, CDCl₃, δ, ppm): 21.66, 78.75, 95.18, 111.45, 118.07, 119.43, 123.42, 125.56, 126.11, 128.91, 131.56, 133.78, 138.66, 155.72, 157.52, 175.17; Mass Spectra (*m/z*): 260.0839 (M⁺).

3-(4-Methoxy-phenylethynyl)-chromen-4-one (3): m.p.: $130 - 131 \,^{\circ}$ C; ¹H NMR (δ , ppm): 8.25, (d, J = 8 Hz, 1H), 8.19 (s, 1H), 7.66 (t, J = 8.8 Hz, 1H), 7.45 (m, 4H), 6.85 (d, J = 8 Hz, 2H), 3.8 (s, 3H); ¹³C NMR (δ): (100 MHz, CDCl₃): 55.27, 78.06, 94.97, 111.46, 113.77, 114.56, 118.03, 123.32, 125.48, 126.01, 133.11, 133.72, 155.65, 157.33, 159.59, 175.18; Mass Spectra(m/z): 276.0787 (M⁺).

3-(4-Isopropoxy-phenylethynyl)-chromen-4-one (4): m.p.: 130 – 133 °C; ¹H NMR (δ , ppm): 8.25, (d, J = 8 Hz, 1H), 8.18 (s, 1H), 7.66 (t, J = 8 Hz, 1H), 7.43 (m, 4H), 6.82 (d, J = 6.8 Hz, 2H), 4.54 (t, J = 6.4 Hz, 1H), 1.32 (d, J = 6 Hz, 6H); ¹³C NMR (δ): (100 MHz, CDCl₃): 22.41, 70.23, 78.26, 95.48, 111.93, 114.56, 115.80, 118.39, 123.74, 125.84, 126.44, 133.52, 134.06, 156.06, 157.63, 158.39, 175.55; Mass Spectra (m/z): 304.1098 (M⁺).

3-[4-(2-Ethyl-hexyloxy)-phenylethynyl]-chromen-4-one (5): viscous liquid; ¹H NMR (δ, ppm):8.25, (d, *J* = 8 Hz, 1H), 8.18 (s, 1H), 7.66 (t, *J* = 8.8 Hz, 1H), 7.43 (m, 4H), 6.84 (d, J = 6.8 Hz, 2H), 3.83 (d, *J* = 6 Hz, 2H), 1.9 (m, 2H), 1.4 (m, 7H), 0.90 (m, 6H); ¹³C NMR (δ): (100 MHz, CDCl₃): 11.21, 14.19, 23.11, 23.89, 29.13, 30.54, 39.34, 70.50, 76.68, 77.00, 77.32, 77.92, 95.19, 111.57, 114.23, 114.34, 118.04, 123.37, 125.48, 126.07, 133.09, 133.72, 155.69, 157.28, 159.49, 175.21; Mass Spectra (*m/z*): 374.1885 (M⁺).

Figure S-1. UV-Spectra of 1 in various solvents.

Figure S-2. UV Spectra of 2 in various solvents.

Figure S-3. UV Spectra of 3 in various solvents.

Figure S-4. UV Spectra of 4 in various solvents.

Figure S-5. UV Spectra of 5 in various solvents.

Figure S-6. Fluorescence spectra of 1 in various solvents.

Figure S-7. Fluorescence spectra of 2 in various solvents.

Figure S-8. Fluorescence spectra of 3 in various solvents.

Figure S-9. Fluorescence spectra of 4 in various solvents.

Figure S-10. Fluorescence Spectra of 5 in various solvents.

Figure S-11. Typical CV curve for compound 1 against Ag/AgCl recorded in ACN (10^{-3} M with 50 mM TBAP).

Figure S-12. Typical CV curve for compound **2** against Ag/AgCl recorded in ACN (10^{-3} M with 50 mM TBAP).

Figure S-13. Typical CV curve for compound **3** against Ag/AgCl recorded in ACN (10^{-3} M with 50 mM TBAP).

Figure S-14. Typical CV curve for compound **4** against Ag/AgCl recorded in ACN (10⁻³M with 50 mM TBAP).

Figure S-15. Typical CV curve for compound **5** against Ag/AgCl recorded in ACN (10^{-3} M with 50 mM TBAP).

Figure S-16. Typical CV curve for compound **6** against Ag/AgCl recorded in ACN (10^{-3} M with 50 mM TBAP); * indicates interference caused by to incompletely removed oxygen/impurity.

Figure S-17. Comparative ECL (Squares) and PL (solid line) spectra of compound 4 showing close overlap of both the spectra recorded in ACN at room temperature.

Table 1. Crystal data and structure refinement for IC10593 Compound 4.

Identification code	ic10593		
Diffractometer used	Nonius KappaCCD		
Empirical formula	C ₂₀ ^H 16 ^O 3		
Formula weight	304.33		
Temperature	295(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2 ₁ /c		
Unit cell dimensions	a = 14.2400(7) Å alpha = 90 ⁰ b = 6.3210(4) Å beta = 98.915(3) ⁰ c = 36.476(2) Å gamma = 90 ⁰		
Volume, Z	3243.6(3) Å ³ , 8		
Density (calculated)	1.246 Mg/m ³		
Absorption coefficient	0.083 mm ⁻¹		
F(000)	1280		
Crystal size	0.30 x 0.20 x 0.15 mm		
θ range for data collection	1.13 to 24.97 ⁰		
Limiting indices	-15 ≤ h ≤ 15, -7 ≤ k ≤ 7, -32 ≤ 1 ≤ 42		
Reflections collected	10293		
Independent reflections	$5291 (R_{int} = 0.1081)$		
Absorption correction	Multi-scan		
Max. and min. transmission	0.998 and 0.922		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	5200 / 0 / 416		
Goodness-of-fit on F ²	1.672		
Final R indices $[I>2\sigma(I)]$	R1 = 0.1601, wR2 = 0.3582		
R indices (all data)	R1 = 0.2998, wR2 = 0.3932		
Extinction coefficient	0.035(5)		
Largest diff. peak and hole	0.580 and -0.528 eÅ ⁻³		

O(1) - C(1)	1,359(9)	0(1)-C(9)	1.390(10)
O(2) - C(3)	1 242(10)	O(3) = C(15)	1.362(9)
O(2) = O(3)	1 447(10)	O(4) = O(21)	1 363 (10)
O(3) = C(18)	1.347(10)	O(4) = C(21)	1, 244(11)
O(4) - C(29)	1.3//(10)	O(5) = C(23)	1.420(11)
O(6)-C(35)	1.357(9)	O(6)-C(38)	1.439(11)
C(1)-C(2)	1.357(12)	C(2)-C(10)	1.417(12)
C(2) - C(3)	1.450(12)	C(3)-C(4)	1.439(11)
C(4) - C(9)	1.364(12)	C(4) - C(5)	1.435(12)
C(5) - C(6)	1.367(12)	C(6) - C(7)	1.40(2)
C(3) - C(0)	1 39(2)	C(8) = C(9)	1 395(11)
C(7) = C(8)	1 101 (11)	C(0) = C(0)	1 A37(12)
C(10) - C(11)			
C(12) - C(13)	1.363(12)	C(12) - C(17)	1.386(12)
C(13)-C(14)	1.362(11)	C(14)-C(15)	1.366(12)
C(15)-C(16)	1.400(12)	C(16)-C(17)	1.378(10)
C(18)-C(19)	1.512(11)	C(18)-C(20)	1.541(13)
C(21) - C(22)	1.356(12)	C(22)-C(23)	1.413(12)
C(22) - C(30)	1.447(12)	C(23) - C(24)	1.466(11)
C(24) = C(25)	1 373 (12)	C(24) = C(29)	1.375(12)
C(24) = C(23)	1.373(12)	C(24) = C(27)	1 354(14)
C(25) - C(26)	1.3/4(12)	C(28) - C(27)	1.331(11)
C(27)-C(28)	1.391(13)	C(28)-C(29)	1.375(11)
C(30)-C(31)	1.173(11)	C(31)-C(32)	1.448(11)
C(32)-C(33)	1.375(11)	C(32)-C(37)	1.409(12)
C(33)-C(34)	1.374(10)	C(34)-C(35)	1.372(12)
C(35) - C(36)	1.371(12)	C(36)-C(37)	1.396(11)
C(38) - C(40)	1.504(14)	C(38) - C(39)	1,506(12)
0(30) 0(10)	10001(11)		
a(1) a(1) a(0)	110 6 (7)	C(15) = O(2) = C(18)	122 0(7)
C(1) = O(1) = C(9)	110.0(7)	C(15) = O(3) = C(10)	110 (7)
C(21) - O(4) - C(29)	118.7(7)	C(35) - O(6) - C(38)	119.6(8)
C(2) - C(1) - O(1)	125.8(8)	C(1) - C(2) - C(10)	119.9(9)
C(1)-C(2)-C(3)	116.6(8)	C(10) - C(2) - C(3)	123.4(9)
O(2)-C(3)-C(4)	123.7(10)	0(2)-C(3)-C(2)	118.9(9)
C(4) - C(3) - C(2)	117.4(9)	C(9)-C(4)-C(5)	116.9(8)
C(9) - C(4) - C(3)	121.5(9)	C(5) - C(4) - C(3)	121.5(9)
C(6) - C(5) - C(4)	120.5(10)	C(5) - C(6) - C(7)	119.0(11)
C(0) = C(0) = C(1)	123 0(11)	C(7) = C(8) = C(9)	115.8(12)
C(0) = C(1) = C(0)	110 8(7)	C(4) = C(9) = C(9)	124.6(10)
C(4) = C(9) = O(1)	119.8(7)	C(4) = C(3) = C(3)	
O(1) - C(9) - C(8)	115.4(10)	C(11) = C(10) = C(2)	1/8.0(11)
C(10) - C(11) - C(12)	178.8(11)	C(13) - C(12) - C(17)	117.2(8)
C(13)-C(12)-C(11)	123.2(9)	C(17) - C(12) - C(11)	119.6(9)
C(14) - C(13) - C(12)	121.1(9)	C(13)-C(14)-C(15)	121.9(10)
O(3)-C(15)-C(14)	117.3(9)	0(3)-C(15)-C(16)	123.8(9)
C(14) - C(15) - C(16)	118.7(9)	C(17)-C(16)-C(15)	117.9(9)
C(16) - C(17) - C(12)	123.0(9)	O(3) - C(18) - C(19)	106.1(8)
O(3) = C(18) = C(20)	109.3(7)	C(19) - C(18) - C(20)	113,1(8)
C(22) = C(21) = O(4)	123 0(8)	C(21) - C(22) - C(23)	120.5(9)
C(22) - C(21) - O(4)	117 4 (9)	C(22) = C(22) = C(30)	122 0 (9)
C(21) - C(22) - C(30)		C(23) = C(22) = C(30)	122.0(9)
O(5) - C(23) - C(22)	124.2(9)	O(5) - C(23) - C(24)	119.0(10)
C(22)-C(23)-C(24)	116.6(10)	C(25) - C(24) - C(29)	118.1(9)
C(25)-C(24)-C(23)	123.0(10)	C(29)-C(24)-C(23)	118.9(9)
C(24)-C(25)-C(26)	119.6(11)	C(27)-C(26)-C(25)	122.2(10)
C(26)-C(27)-C(28)	119.2(10)	C(29)-C(28)-C(27)	118.2(10)
C(28) - C(29) - C(24)	122.7(9)	C(28)-C(29)-O(4)	115.2(9)
C(24) - C(29) - O(4)	122.1(8)	C(31) - C(30) - C(22)	177.8(10)
C(21) = C(21) = C(22)	176 6 (9)	C(33) - C(32) - C(37)	118.2(8)
a(30) = c(31) = c(32)	100 5/01	C(37) = C(32) = C(37)	119 2 (9)
C(33) - C(32) - C(31)		C(37) = C(32) = C(31)	101 0(0)
C(32) - C(33) - C(34)	121.1(9)	C(35) - C(34) - C(33)	141.4(9)
O(6)-C(35)-C(36)	125.5(9)	O(6) - C(35) - C(34)	115.4(9)
C(36)-C(35)-C(34)	119.0(8)	C(35)-C(36)-C(37)	120.8(9)
C(36)-C(37)-C(32)	119.7(9)	O(6)-C(38)-C(40)	113.2(8)
0(6)-C(38)-C(39)	105.3(9)	C(40)-C(38)-C(39)	112.4(8)

Symmetry transformations used to generate equivalent atoms:

-----End of Electronic Supplementary Information------