Kinetics and mechanism of the sensitized photodegradation of lignin model compounds

Ann M. McNally, Emily C. Moody, and Kristopher McNeill*

Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN, 55455, USA E-mail: mcneill@chem.umn.edu; Fax: 612-626-7541; Tel: 612-625-0781

Supporting Information:Derivation of expression to describe k_T Sample transient signals obtained by laser flash photolysis

Derivation of expression to describe $k_{\rm T}$

The following scheme was used in the development of an expression to quantify $k_{\rm T}$. The derivation of this expression follows.

$$P_{T} \xleftarrow{k_{T}[S]} \text{sens } * \xrightarrow{k_{O_{2}}[O_{2}]} \stackrel{1}{\longrightarrow} O_{2} \xrightarrow{k_{\text{solv}} + k_{\text{tot}}[S]} P_{I_{O_{2}}}$$

Kinetic model for measuring lignin model compound interaction with triplet sensitizer. O_2 is ground state molecular oxygen, ${}^{1}O_2$ is singlet oxygen, S is substrate, P_T is the product formed through reaction of S and sens* where sens* is excited state sensitizer, P_{102} is the product formed through reaction of S and ${}^{1}O_2$, k_{02} is the rate constant for the formation of ${}^{1}O_2$ by the interaction of O_2 and excited state sensitizer, k_T is the rate constant for the interaction of excited state sensitizer with S that results in quenching or reaction, k_{solv} is the rate constant for deactivation of ${}^{1}O_2$ by solvent, k_{tot} is the sum of k_{phys} , and k_{rxn} , which are the rate constants for physical quenching by S, and chemical reaction with S, respectively.

The differential equation describing the changes in $[{}^{1}O_{2}]$ versus time for this model is given in equation 1.

$$\frac{d[{}^{1}O_{2}]}{dt} = k_{O_{2}}[O_{2}][sens^{*}] - ((k_{solv} + k_{tot}[S])[{}^{1}O_{2}])$$
(1)

The time-dependent concentration of triplet sensitizer is given by equation 2.

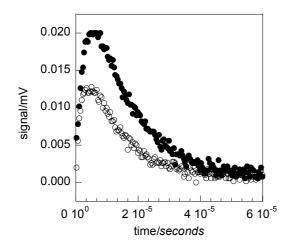
$$[\text{sens*}]_{t} = [\text{sens*}]_{0} e^{-(k_{O_{2}}[O_{2}] + k_{T}[S])t}$$
(2)

Inserting equation 2 into equation 1, rearranging, and integrating allows one to describe $[{}^{1}O_{2}]$ according to equation 3.¹

$$[{}^{1}O_{2}] = \frac{[\text{sens}^{*}]_{0}}{k_{\text{solv}} + k_{\text{tot}}[S]} \left(\frac{k_{O_{2}}[O_{2}]}{k_{O_{2}}[O_{2}] + k_{\text{T}}[S]} \right)$$
(3)

The area (A) under each transient signal is directly proportional to $[^{1}O_{2}]$, and was calculated at varying substrate concentrations. By dividing the relative $^{1}O_{2}$ concentration

Supplementary Material (ESI) for Photochemical & Photobiological Sciences This journal is © The Royal Society of Chemistry and Owner Societies 2004


in the absence of substrate (A_0) by the relative 1O_2 concentration in the presence of substrate (A_s) equation 4 is obtained

$$\frac{A_0}{A_S} = \frac{(k_{solv} + k_{tot}[S])(k_{O_2}[O_2] + k_T[S])}{k_{solv}k_{O_2}[O_2]}$$
(4)

When $k_{tot}[S] \ll k_{solv}$, as is observed in the degradation of the neutral models, equation 4 is simplified to equation 5.

$$\frac{A_0}{A_S} = 1 + \frac{k_T}{k_{O_2}[O_2]}[S]$$
(5)

Sample ¹O₂ transient signals obtained by laser flash photolysis

Transient signals showing the growth and decay of ${}^{1}O_{2}$ phosphoresence emission determined by laser flash photolysis for dimer **2** (0 mM, • and 21.6 mM, •) in EtOH using perinaphthenone as a sensitizer.

1 J. H. Espenson, *Chemical Kinetics and Reaction Mechanisms*, McGraw-Hill Inc., New York, 2nd, 1995, 281 pp.