Supplementary Material (ESI) for Photochemical & Photobiological Sciences This journal is © The Royal Society of Chemistry and Owner Societies 2006

Surface Photochemistry: Benzophenone as a Probe for the Study of Silica and Reversed Phase Silica Surfaces

In this Lifetime Distribution Analysis model, it is assumed that the lifetimes distribution of an excited probe adsorbed on a heterogeneous, porous substrate is a consequence of a distribution of ΔG^0 of activation for the probe adsorption on the substrate around a mean value $\overline{\Delta G^0}$:

$$\Delta G^0 = \overline{\Delta G^0} - \gamma x R T \tag{1}$$

or, in terms of first rate constant, k:

$$\ln(k) = \ln(k) - \gamma x \implies k = (k) \exp(-\gamma x)$$
(2)

where γ is a measure of the distribution width (half full width at maximum×exp(-1)). The distribution function is a sum of symmetrical or asymmetrical Voigt profiles – Gaussian-Lorentzian products – defined in Equation 3:

$$\alpha(\ln(k_{j})) = \sum_{i} \frac{\alpha_{maxi} \exp(-(1 - m_{i})(\ln(k_{j}) - \ln(\overline{k_{i}}))^{2} \ln(2)/(a_{i}L_{i}/2)^{2})}{1 + m_{i}(\ln(k_{j}) - \ln(\overline{k_{i}}))^{2}/(a_{i}L_{i}/2)^{2}}$$
(3)

where α (ln(k_j)) is the relative weight of k_j in the total distribution, \overline{k}_i is the position of the maximum of profile *i*, α_{\max_i} is its maximum, L_i is its full width at half maximum (fwhm), m_i is the Lorentzian weight in the profile *i* ($m_i = 1$ corresponds to a pure lorentzian and $m_i = 0$ corresponds to a pure gaussian), and a_i is the asymmetry factor taking the value 1 for $k_j \ge \overline{k}_i$ and a value ≥ 0 for $k_j < \overline{k}_i$.

The decay curve will, then, be given by:

$$I(t) = \sum_{j} \alpha(\ln(k_{j})) \exp(-k_{j}t)$$
(4)

or, in terms of normalized intensity:

$$\frac{I(t)}{I(0)} = \frac{\sum_{j} \alpha(\ln(k_j)) \exp(-k_j t)}{\sum_{j} \alpha(\ln(k_j))}$$
(5)

Remission functions for BZP / host samples ($n \rightarrow \pi^*$ transition only) with 250 µmol of the probe per gram of the substrate. Curve 1: Silicalite; 2: reversed-phase silica RP-18; 3: RP-8; 4: 60 Å Silica.

Supplementary Material (ESI) for Photochemical & Photobiological Sciences This journal is © The Royal Society of Chemistry and Owner Societies 2006

Fig. S2 – Chromatographic results (GC-MS) of the extracts of benzophenone adsorbed onto 60 Å pore silica, with: a) 266 nm excitation and b) 355 nm excitation.