Supplementary Information

Cis→Trans and *Trans→Cis* Isomerizations of Styrylcoumarins in the Solid State. Importance of the Location of Free Volume in Crystal Lattices

Jarugu Narasimha Moorthy,^{*,†} Parthasarathy Venkatakrishnan,[†] Govardhan Savitha[†] and Richard G. Weiss^{*,§}

[†]Department of Chemistry, Indian Institute of Technology, Kanpur – 208016, INDIA [§]Department of Chemistry, Georgetown University, Washington, DC 20057-1227, USA

Table of Contents

1.	¹ H and ¹³ C NMR Spectra of the <i>cis</i> -Styrylcoumarin 1	S2
2.	¹ H and ¹³ C NMR Spectra of the <i>trans</i> -Styrylcoumarin 1	S3
3.	¹ H and ¹³ C NMR Spectra of the <i>cis</i> -Styrylcoumarin 2	S4
4.	¹ H and ¹³ C NMR Spectra of the <i>trans</i> -Styrylcoumarin 2	S5
5.	¹ H and ¹³ C NMR Spectra of the <i>cis</i> -Styrylcoumarin 3	S 6
6.	¹ H and ¹³ C NMR Spectra of the <i>trans</i> -Styrylcoumarin 3	S 7
7.	¹ H and ¹³ C NMR Spectra of the <i>cis</i> -Styrylcoumarin 4	S 8
8.	¹ H and ¹³ C NMR Spectra of the trans-Styrylcoumarin 4	S9
9.	Cavity Plot for <i>cis</i> -1,2-bis(1-naphthyl)ethylene	S10
10.	Cavity Plot for Z-2-Benzylidenebutyrolactone	S11
11.	Cavity Plot for the <i>E</i> -2-Chlorocinnamic acid	S12
12.	Cavity Plot for the Z-2-Chlorocinnamic acid	S13
13.	Cavity Plot for the <i>trans</i> -1,2-Dibenzoylethylene	S14
14.	Cavity Plot for the Z-2-Methylcinnamic acid	S15
15.	Cavity plot for the <i>cis</i> -1,2-bis(azulenyl)ethylene	S16

Figure S1. ¹H NMR spectrum of *cis*-1.

Figure S2. ¹³C NMR spectrum of *cis*-1.

Figure S3. ¹H NMR spectrum of *trans*-1.

Figure S4. ¹³C NMR spectrum of *trans*-1.

Figure S5. ¹H NMR spectrum of *cis*-2.

Figure S6. ¹³C NMR spectrum of *cis*-2.

Figure S7. ¹H NMR spectrum of *trans-2*.

Figure S8. ¹³C NMR spectrum of *trans*-2.

Figure S9. ¹H NMR spectrum of *cis-***3**.

Figure S10. ¹³C NMR spectrum of *cis*-3.

Figure S11. ¹H NMR spectrum of *trans*-3.

Figure S12. ¹³C NMR spectrum of *trans*-3.

Figure S13. ¹H NMR spectrum of *cis*-4.

Figure S14. ¹³C NMR spectrum of *cis*-4.

Figure S15. ¹H NMR spectrum of *trans*-4.

Figure S16. ¹³C NMR spectrum of *trans*-4.

cis-trans isomerization of cis-1,2-bis(1-naphthyl)ethylene

Figure S17. The cavity plot for *cis*-1,2-bis(1-naphthyl)ethylene. The voids of radius 1.0 Å can be identified over the napthyl ring in the direction along which *cis* \rightarrow *trans* isomerization may occur. The direction for the motion of the ring is indicated by an arrow. (ref: Aldoshin, S. M.; Alfimov, M. V.; Atovmyan, L. O.; Kaminsky, V. F.; Razumov, V. F.; Rachinsky, A. G. *Mol. Cryst. Liq. Cryst.* **1984**, *108*, 1).

cis-trans isomerization of Z-2-benzylidenebutyrolactone

Figure S18. The cavity plot for Z-2-benzylidenebutyrolactone. Notice that the location of the empty spaces for the motions of the phenyl ring may permit $Z \rightarrow E$ isomerization (ref: Kaupp, G.; Haak, M. *Angew.Chem., Int. Ed.* **1996**, *35*, 2774).

Figure S19. The cavity plot for the *E*-2-chlorocinnamic acid. There are no spaces between the aryl rings, but the cages above and below the carboxy moiety can be identified suggesting the possibility of the motion of the latter as being responsible for the initial course of the isomerization. In this case, $E \rightarrow Z$ isomerization is observed. (ref: (a) James, T. C. J. Chem. Soc. **1911**, 99, 1620. (b) Filippakis, S. E.; Leiserowitz, L.; Rabinovich, D.; Schmidt, G. M. J. J. Chem. Soc., Perkin Trans. 2. **1972**, 1750).

Figure S20. The cavity plot for the Z-2-chlorocinnamic acid. There are no voids between the aryl rings, but they can be found in the region close to Cl atoms. In this instance, no $Z \rightarrow E$ isomerization is observed. (ref: Filippakis, S. E.; Leiserowitz, L.; Rabinovich, D.; Schmidt, G. M. J. J. Chem. Soc., Perkin Trans. 2. 1972, 1750).

trans-cis isomerization of trans-1,2-dibenzoylethylene

Figure S21. The cavity plot for the *trans*-1,2-dibenzoylethylene. The cages lie in the direction in which the phenyl rings may undergo in-plane motion to afford *cis* product. In this case, facile *trans-cis* isomerization is observed. (ref: (a) Bart, J. C. J.; Schmidt, G. M. J. *Recl. Trav. Chim. Pays-Bas.* 1978, 97, 231. (b) Kaupp, G.; Schmeyers, J. *J. Photochem. Photobiol. B: Biol.* 2000, 59, 15).

Figure S22. The cavity plot for the Z-2-methylcinnamic acid. The cages lie over the edges of the phenyl rings, but their location is in the direction opposite to the axis about which the motion of atom may facilitate the isomerization. Hence no $Z \rightarrow E$ isomerization is observed. (ref: Filippakis, S. E.; Leiserowitz, L.; Rabinovich, D.; Schmidt, G. M. J. J. *Chem. Soc., Perkin Trans.* 2. **1972**, 1750).

The case of cis-1,2-bis(azulenyl)ethylene. No cis-trans isomerization!

Figure S23. The cavity plot for the *cis*-1,2-bis(azulenyl)ethylene is shown above. The sites of location of empty cages may not permit isomerization (ref: Natarajan, A.; Mague, J. T.; Venkatesan, K.; Arai, T.; Ramamurthy, V. *J. Org. Chem.* **2006**, *71*, 1055).