Supplementary Information for

Ligand-field excited states of hexacyanochromate and hexacyanocobaltate as sensitisers for near-infrared luminescence from Nd(III) and Yb(III) in cyanide-bridged d-f assemblies

Theodore Lazarides,^{*a*} Graham M. Davies,^{*a*} Harry Adams,^{*a*} Cristiana Sabatini,^{*b*} Francesco Barigelletti,^{*b*} Andrea Barbieri,^{**,b*} Simon J. A. Pope,^{*d*} Stephen Faulkner,^{*c*} and Michael D. Ward^{*,*a*}

Photoinduced energy transfer within $[M(CN)_4(\mu-CN)_2Ln(H_2O)_2(dmf)_4] \cdot nH_2O$ species, M = Co(III) and Cr(III), Ln =Gd(III), Nd(III), and Yb(III).

The energy transfer rate constant for the dipole-dipole (Förster) mechanism, k_{en}^{F} , can be estimated by using spectroscopic quantities and according to the following equations.¹⁵

$$k_{en}^{F} = \frac{8.8 \times 10^{-25} K^{2} \phi}{n^{4} \tau d_{MM}^{6}} J_{F}$$
(1)

$$J_F = \frac{\int F(\overline{\upsilon})\varepsilon(\overline{\upsilon})/\overline{\upsilon}^4 d\overline{\upsilon}}{\int F(\overline{\upsilon}) d\overline{\upsilon}}$$
(2)

where K^2 is a geometric factor ($K^2 = 2/3$ for statistical reasons), ϕ and τ are the luminescence quantum yield and lifetime of the donor, respectively, *n* is the refractive index of the medium (taken *n* = 2 for our solid samples) and J_F is the Förster overlap integral between the luminescence spectrum of the donor, $F(\bar{v})$ and the absorption spectrum of the acceptor, $\varepsilon(\bar{v})$, on an energy scale (cm⁻¹). For the cases of **Co-Nd** and **Co-Yb**, Table SI_1 lists values for the pertinent parameters and results.

In order to estimate the exchange rate constant (Dexter),¹⁶ k_{en}^{D} , the following equations can be employed in the presence of a weak interaction, H, between the donor and acceptor units; J_{D} is the Dexter integral.

$$k_{en}^{\ \ D} = \frac{4\pi^2 H^2}{h} J_D$$
(3)

$$J_{D} = \frac{\int F(\overline{\upsilon})\varepsilon(\overline{\upsilon})d\overline{\upsilon}}{\int F(\overline{\upsilon})d\overline{\upsilon}\int\varepsilon(\overline{\upsilon})d\overline{\upsilon}}$$
(4)

For the **Co-Nd** and **Co-Yb** cases, the emission of the donor unit (**Co**) is available from the **Co-Gd** spectroscopy (see main text) and the exctinction coefficient profile, $\varepsilon(\overline{v})$, of the **Nd** and **Yb** units has been evaluated based on the available absorption profiles (Figure 2), and using the measured peak values $\varepsilon_{794}^{\text{Nd}} = 12.6 \text{ M}^{-1} \text{ cm}^{-1}$ and $\varepsilon_{975}^{\text{Yb}} = 2.1 \text{ M}^{-1} \text{ cm}^{-1}$ for water solutions of NdCl₃·6H₂O and Yb(NO₃)₃·6H₂O as reference compounds. Computations were performed with the help of Matlab 5.2 (MatWorks).

within the Co-Nd and Co	used to evaluate the energy transf	
	· ·	ref
	Co-Ln	
Intercenter distance	5.6 Å	
φ (Co)	0.1	10g
τ (Co)	630 ns	
	Co-Nd	
J _F	$6.4 \times 10^{-17} \text{ cm}^3 \text{ M}^{-1}$	
R _c	7.8 Å	
k_{en}^{F} (5.6 Å)	$1.6 \times 10^7 \text{ s}^{-1}$	
J _D	1.1×10^{-4} cm	
	Co-Yb	
J _F	$5.2 \times 10^{-18} \text{ cm}^3 \text{ M}^{-1}$	
R _c	5.2 Å	
k_{en}^{F} (5.6 Å)	$1.3 \times 10^6 \mathrm{s}^{-1}$	
J _D	5.4×10^{-5} cm	