## **Electronic Supplementary Information**

## Identification of 3,4-didehydrorhodopin as major carotenoid in *Rhodopseudomonas* species

Tadashi Mizoguchi, Megumi Isaji, Jiro Harada and Hitoshi Tamiaki\*

Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan

## Contents

Details of mass spectrometric analysis.

| Table S1.  | Electronic-absorption properties of carotenoids isolated from <i>Rhodopseudomonas</i> sp. Rits.                     |
|------------|---------------------------------------------------------------------------------------------------------------------|
| Table S2.  | The ${}^{1}$ H vicinal coupling constants for 3,4-didehydrorhodopin in CDCl <sub>3</sub> .                          |
| Figure S1. | Electronic-absorption spectra of each carotenoid found in <i>Rhodopseudomonas</i> sp. Rits obtained by on-line PDA. |
| Figure S2. | A representative <sup>1</sup> H-NMR spectrum of the isolated 3,4-didehydrorhodopin in CDCl <sub>3</sub> .           |

## Identification of Cars found in *Rhodopseudomonas* sp. Rits by mass spectrometry

Table 1 lists the results of mass spectrometry of Cars #1 - #7. The molecular-ion peaks and their fragment peaks originating from the cleavage of terminal groups can be used to identify each Car. More specifically, the fragment peaks at [MH-18]<sup>+</sup>, [MH-32]<sup>+</sup>,  $[MH-50]^+$  and  $[MH-64]^+$  correspond to the cleavage of terminal hydroxy, methoxy, hydroxy-methoxy and two methoxy groups in the molecule. Car #1 possessing  $(C=C)_{11}$  group exhibits the molecular-ion peak at 537.4 as the protonated form and no detectable fragment peak under present MS conditions. Car #2 possessing  $(C=C)_{12}$ group exhibits the molecular-ion peak at 567.4 ([MH]<sup>+</sup>) and the sole fragment peak at 535.4 ([MH-32]<sup>+</sup>). This fragment peak is assigned to the cleavage of a terminal methoxy group in the molecule. Car #3 possessing  $(C=C)_{13}$  group exhibits the molecular-ion peak at 597.3 ([MH]<sup>+</sup>) and two fragment peaks at 565.4 ([MH-32]<sup>+</sup>) and 533.3 ([MH-64]<sup>+</sup>). These fragment peaks are assigned to the removal of one and two terminal methoxy groups in the molecule. Car #4 possessing (C=C)11 group and Car #5 possessing  $(C=C)_{12}$  group exhibit the molecular-ion peaks at 555.3 and 553.3 ([MH]<sup>+</sup>) and the sole fragment peaks at 537.4 ([MH-18]<sup>+</sup>) and 535.3 ([MH-18]<sup>+</sup>), respectively. These fragment peaks are assigned to the cleavage of a terminal hydroxy group in the molecule. Car #6 possessing  $(C=C)_{12}$  group and Car #7 possessing  $(C=C)_{13}$  group exhibit the molecular-ion peaks at 585.4 and 583.3 ([MH]<sup>+</sup>), respectively, and the three fragment peaks at 567.1 ([MH-18]<sup>+</sup>), 553.4 ([MH-32]<sup>+</sup>) and 535.3 ([MH-50]<sup>+</sup>) for Car #6 and 565.2 ( $[MH-18]^+$ ), 551.3 ( $[MH-32]^+$ ) and 533.2 ( $[MH-50]^+$ ) for Car #7. These fragment peaks are assigned to the cleavage of a terminal hydroxy, a methoxy and hydroxy-methoxy groups in the molecule.

| Peak #<br>in HPLC | Carotenoid (number of conjugated double bonds) | $\lambda_{max}$ in the eluent (nm) |     |     | $\epsilon$ at $\lambda_{max}$ in the | ε at 450 nm                                |
|-------------------|------------------------------------------------|------------------------------------|-----|-----|--------------------------------------|--------------------------------------------|
|                   |                                                | 0→2                                | 0→1 | 0→0 | literature <sup>a</sup>              | in the eluent                              |
|                   |                                                |                                    |     |     | $(M^{-1} \cdot cm^{-1})$             | $(\mathbf{M}^{-1} \cdot \mathbf{cm}^{-1})$ |
| 1                 | Lycopene (11)                                  | 445                                | 484 | 504 | 184,900 <sup>b</sup>                 | 119,700                                    |
| 2                 | Anhydrorhodovibrin (12)                        | 458                                | 484 | 516 | 152,800 <sup>b</sup>                 | 96,600                                     |
| 3                 | Spirilloxanthin (13)                           | 467                                | 494 | 528 | 147,200 <sup>c</sup>                 | 68,600                                     |
| 4                 | Rhodopin (11)                                  | 445                                | 472 | 504 | 165,600 <sup>c</sup>                 | 106,600                                    |
| 5                 | 3,4-Didehydrorhodopin (12)                     | 458                                | 484 | 516 | _                                    | 96,600                                     |
| 6                 | Rhodovibrin (12)                               | 458                                | 484 | 516 | _                                    | 96,600                                     |
| 7                 | OH-Spirilloxanthin (13)                        | 467                                | 494 | 528 | _                                    | 68,600                                     |

Table S1. Electronic-absorption properties of carotenoids isolated from the cells of*Rhodopseudomonas* sp. Rits.

<sup>a</sup>Data taken from Britton (Ref.15). <sup>b</sup>In petroleum ether. <sup>c</sup>In benzene.

Table S2. The <sup>1</sup>H vicinal coupling constants<sup>a</sup> (Hz) for 3,4-didehydrorhodopin in CDCl<sub>3</sub>.

| C3H=C4H 16  |    | С6Н–С7Н     | 11 |
|-------------|----|-------------|----|
| C7H=C8H     | 15 | C10H–C11H   | 11 |
| C11H=C12H   | 16 | C14H–C15H   | 11 |
| С11'Н=С12'Н | 16 | С14'Н–С15'Н | 11 |
| С7'Н=С8'Н   | 16 | С10'Н–С11'Н | 12 |
|             |    | С6'Н–С7'Н   | 11 |

<sup>a</sup>15H=15'H coupling constant was not determined due to the contribution of long-range coupling via 14H (14'H).



Figure S1. Electronic-absorption spectra of each Car found in *Rhodopseudomonas* sp. Rits obtained by on-line PDA. Numbers in the figure correspond to the HPLC elution order shown in Figure 1.



Figure S2. A representative <sup>1</sup>H-NMR spectrum of the isolated 3,4-didehydrorhodopin in CDCl<sub>3</sub> at room temperature.