Synthesis of zinc bacteriochlorophyll-*d* analogues with various 17-substituents and their chlorosomal self-aggregates in non-polar organic solvents[†]

Hitoshi Tamiaki,* Tomotaka Michitsuji and Reiko Shibata

Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.

E-mail: tamiaki@se.ritsumei.ac.jp; Fax: +81-77-561-2659

Synthetic procedures of novel chlorins and their spectral data

Ethyl pyropheophorbide-*d* (5a). Into a dry toluene solution (30 ml) of 4 (102 mg, 185 μmol), ethanol (8.73 g, 189 mmol) and bis(dibutylchlorotin)oxide (14.1 mg, 25 μmol) were added, stirred and refluxed for 27 h. After evaporating the solvent, the residue was purified by FCC (4% Et₂O/CH₂Cl₂) and recrystallization (CH₂Cl₂/hexane) to give **5a** (62.3 mg, 60%) as a black solid: mp 222-225 °C; VIS (CH₂Cl₂) $\lambda_{max} = 694$ (relative intensity, 0.80), 632 (0.09), 554 (0.16), 521 (0.15), 429 (1.00), 388 nm (0.84); ¹H-NMR (CDCl₃) $\delta = 11.55$ (1H, s, 3-CHO), 10.30, 9.61, 8.84 (each 1H, s, 5-, 10-, 20-H), 5.34, 5.19 (each 1H, d, J = 20 Hz, 13^2 -H₂), 4.58 (1H, q, J = 7 Hz, 18-H), 4.39 (1H, d, J = 7 Hz, 17-H), 4.13-4.02 (2H, m, 17^2 -COOCH₂), 3.77, 3.72, 3.32 (each 3H, s, 2-, 7-, 12-CH₃), 3.72 (2H, q, J = 7 Hz, 8-CH₂), 2.75-2.70, 2.62-2.54, 2.35-2.26 (1H+1H+2H, m, 17-CH₂CH₂), 1.85 (3H, d, J = 7 Hz, 18-CH₃), 1.72 (3H, t, J = 7 Hz, 8^1 -CH₃), 1.16 (3H, t, J = 7 Hz, 17^2 -COOCCH₃), -0.13, -2.06 (each 1H, s, NH × 2); MS (APCI) found: *m/z* 565. Calcd. for C₃₄H₃₇N₄O₄: MH⁺, 565.

Dodecyl pyropheophorbide-*d* (5b). Similarly to synthesis of 5a, transesterification of 4 (101 mg, 183 μmol) with 1-dodecanol (293 mg, 1.85 mmol) in toluene (30 ml) of tin-catalyst (10.3 mg, 18.7 μmol) for 5 h gave 5b (83.0 mg, 64%) as a black solid after FCC (3-4% Et₂O/CH₂Cl₂) and recrystallization (CH₂Cl₂/methanol): mp 125-130 °C; VIS (CH₂Cl₂) $\lambda_{max} = 694$ (rel., 0.80), 632 (0.09), 554 (0.17), 521 (0.15), 428 (1.00), 388 nm (0.84); ¹H-NMR (CDCl₃) $\delta = 11.57$ (1H, s, 3-CHO), 10.33, 9.64, 8.85 (each 1H, s, 5-, 10-, 20-H), 5.35, 5.20 (each 1H, d, *J* = 20 Hz, 13²-H₂), 4.58 (1H, dq, *J* = 2, 8 Hz, 18-H), 4.40 (1H, dt, *J* = 9, 2 Hz, 17-H), 4.00-3.91 (2H, m, 17²-COOCH₂), 3.79, 3.73, 3.34 (each 3H, s, 2-, 7-, 12-CH₃), 3.74 (2H, q, *J* = 8 Hz, 8-CH₂), 2.76-2.69, 2.61-2.53, 2.37-2.24 (1H+1H+2H, m, 17-CH₂CH₂), 1.85 (3H, d, *J* = 8 Hz, 18-CH₃), 1.73 (3H, t, *J* = 8 Hz, 8¹-CH₃), 1.25-1.17 (20H, m, 17²-COOCC₁₀H₂₀), 0.84 (3H, t, *J* = 7 Hz, 17²-COOC₁₁CH₃), -0.11, -2.04 (each 1H, s, NH × 2); MS (APCI) found: *m/z* 705. Calcd. for C₄₄H₅₇N₄O₄: MH⁺, 705.

Docosyl pyropheophorbide-*d* (5c). Similarly to synthesis of 5a, transesterification of 4 (80 mg, 145 µmol) with 1-docosanol (469 mg, 1.44 mmol) in toluene (25 ml) of tin-catalyst (5.6 mg, 10.1 µmol) for 5 h gave 5c (95.0 mg, 78%) as a black solid after FCC (3-4% Et₂O/CH₂Cl₂) and recrystallization (CH₂Cl₂/methanol): mp 110-114 °C; VIS (CH₂Cl₂) $\lambda_{max} = 694$ (rel., 0.80), 632 (0.09), 554 (0.17), 521 (0.15), 429 (1.00), 388 nm (0.84); ¹H-NMR (CDCl₃) $\delta = 11.58$ (1H, s, 3-CHO), 10.35, 9.65, 8.86 (each 1H, s, 5-, 10-, 20-H), 5.34, 5.23 (each 1H, d, J = 20 Hz, 13²-H₂), 4.59 (1H, dq, J = 2, 8 Hz, 18-H), 4.40 (1H, dt, J = 8, 2 Hz, 17-H), 4.01-3.90 (2H, m, 17²-COOCH₂), 3.80, 3.74, 3.35 (each 3H, s, 2-, 7-, 12-CH₃), 3.75 (2H, q, J = 8 Hz, 8-CH₂), 2.77-2.69, 2.62-2.54, 2.37-2.27 (1H+1H+2H, m, 17-CH₂CH₂), 1.85 (3H, d, J = 8 Hz, 18-CH₃), 1.74 (3H, t, J = 8 Hz, 8¹-CH₃), 1.26-1.18 (40H, m, 17²-COOCC₂₀H₄₀), 0.88 (3H, t, J = 7 Hz, 17²-COOC₂₁CH₃), -0.10, -2.02 (each 1H, s, NH × 2); MS (APCI) found: *m/z* 845. Calcd. for C₅₄H₇₇N₄O₄: MH⁺, 845.

Neopentyl pyropheophorbide-*d* (5d). Similarly to synthesis of 5a, transesterification of 4 (85 mg, 154 µmol) with 2,2-dimethylpropanol (neopentyl alcohol, 133 mg, 1.51 mmol) in toluene (25 ml) of tin-catalyst (8.9 mg, 16.1 µmol) for 21 h gave 5d (55.7 mg, 60%) as a black solid after FCC (4% Et₂O/CH₂Cl₂) and recrystallization (CH₂Cl₂/hexane): mp 175-180 °C; VIS (CH₂Cl₂) $\lambda_{max} = 694$ (rel., 0.81), 632 (0.09), 554 (0.17), 522 (0.15), 429 (1.00), 388 nm (0.84); ¹H-NMR (CDCl₃) $\delta =$ 11.55 (1H, s, 3-CHO), 10.29, 9.60, 8.85 (each 1H, s, 5-, 10-, 20-H), 5.34, 5.20 (each 1H, d, *J* = 19 Hz, 13²-H₂), 4.59 (1H, dq, *J* = 2, 7 Hz, 18-H), 4.41 (1H, dt, *J* = 8, 2 Hz, 17-H), 3.78, 3.70 (each 1H, d, *J* = 10 Hz, 17²-COOCH₂), 3.78, 3.72, 3.31 (each 3H, s, 2-, 7-, 12-CH₃), 3.72 (2H, q, *J* = 8 Hz, 8-CH₂), 2.78-2.72, 2.63-2.58, 2.37-2.29 (1H+1H+2H, m, 17-CH₂CH₂), 1.86 (3H, d, *J* = 7 Hz, 18-CH₃), 1.71 (3H, t, *J* = 8 Hz, 8¹-CH₃), 0.84 (9H, s, 17²-COOCC(CH₃)₃), -0.15, -2.07 (each 1H, s, NH × 2); MS (APCI) found: *m/z* 607. Calcd. for C₃₇H₄₃N₄O₄: MH⁺, 607.

Benzyl pyropheophorbide-*d* (5e). Similarly to synthesis of 5a, transesterification of 4 (97 mg, 175 μ mol) with benzyl alcohol (201 mg, 1.86 mmol) in toluene (30 ml) of tin-catalyst (30.0 mg, 54.2 μ mol) for 6 h gave 5e (77.0 mg, 70%) as a black solid after FCC (4-5% Et₂O/CH₂Cl₂) and

recrystallization (CH₂Cl₂/methanol): mp 98-102 °C; VIS (CH₂Cl₂) $\lambda_{max} = 694$ (rel., 0.80), 633 (0.09), 555 (0.17), 522 (0.15), 429 (1.00), 388 nm (0.83); ¹H-NMR (CDCl₃) $\delta = 11.55$ (1H, s, 3-CHO), 10.31, 9.61, 8.82 (each 1H, s, 5-, 10-, 20-H), 7.26-7.25 (3H, m, 3-, 4-, 5-H of Ph), 7.21-7.19 (2H, m, 2-, 6-H of Ph), 5.31, 5.14 (each 1H, d, J = 20 Hz, 13^2 -H₂), 5.05, 4.98 (each 1H, d, J = 12 Hz, 17^2 -COOCH₂), 4.56 (1H, dq, J = 1, 7 Hz, 18-H), 4.37 (1H, br-d, J = 7 Hz, 17-H), 3.77, 3.72, 3.32 (each 3H, s, 2-, 7-, 12-CH₃), 3.73 (2H, q, J = 8 Hz, 8-CH₂), 2.77-2.71, 2.65-2.60, 2.36-2.29 (1H+1H+2H, m, 17-CH₂CH₂), 1.82 (3H, d, J = 7 Hz, 18-CH₃), 1.72 (3H, t, J = 8 Hz, 8^1 -CH₃), -0.14, -2.08 (each 1H, s, NH × 2); MS (APCI) found: *m/z* 627. Calcd. for C₃₉H₃₉N₄O₄: MH⁺, 627.

17²-Acetoxymethyl-17²-decarboxy-pyropheophorbide-*d* (9a). To a dry CH₂Cl₂ solution (70 ml) of 8 (100.0 mg, 191 μmol), acetic acid (45.2 mg, 764 μmol),

1-[3-(*N*,*N*-dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDC·HCl, 220.0 mg, 1148 μmol) and DMAP (96.7 mg, 792 μmol) were added at 0 °C and stirred for 18 h under N₂ at room temperature. The reaction mixture was washed with aq. 2% HCl, aq. 4% NaHCO₃ and H₂O, dried over Na₂SO₄ and evaporated to dryness. The residue was purified by FCC (7% Et₂O/CH₂Cl₂) and recrystallization (CH₂Cl₂/hexane) to give **9a** (99.7 mg, 93%) as a black green solid: mp 250-252 °C; VIS (CH₂Cl₂) $\lambda_{max} = 695$ (rel., 0.81), 633 (0.09), 554 (0.16), 522 (0.15), 429 (1.00), 387 nm (0.85); ¹H-NMR (CDCl₃) $\delta = 11.56$ (1H, s, 3-CHO), 10.31, 9.62, 8.85 (each 1H, s, 5-, 10-, 20-H), 5.29, 5.19 (each 1H, d, *J* = 19 Hz, 13²-H₂), 4.60 (1H, dq, *J* = 2, 7 Hz, 18-H), 4.37 (1H, dt, *J* = 9, 2 Hz, 17-H), 4.12, 4.10 (each 1H, dt, *J* = 11, 7 Hz, 17²-CH₂), 3.73 (2H, q, *J* = 8 Hz, 8-CH₂), 3.79, 3.73, 3.33 (each 3H, s, 2-, 7-, 12-CH₃), 2.45-2.40, 2.15-2.08, 1.95-1.88, 1.68-1.61 (each 1H, m, 17-CH₂CH₂), 2.01 (3H, s, 17³-OCOCH₃), 1.87 (3H, d, *J* = 7 Hz, 18-CH₃), 1.72 (3H, t, *J* = 8 Hz, 8¹-CH₃), -0.10, -2.03 (each 1H, s, NH × 2); MS (ESI) found: *m/z* 565. Calcd. for C₃₄H₃₇N₄O₄: MH⁺, 565.

17²-Decarboxy-17²-dodecanoyloxymethyl-pyropheophorbide-*d* (9b). Similarly to synthesis of 9a, esterification of 8 (100.0 mg, 191 μmol) with dodecanoic acid (lauric acid, 153.1 mg, 764 μmol) in CH₂Cl₂ (70 ml) of EDC·HCl (219.7 mg, 1146 μmol) and DMAP (93.3 mg, 764 μmol) for 23 h gave 9b (105.0 mg, 78%) as a black solid after FCC (6% Et₂O/CH₂Cl₂) and recrystallization (CH₂Cl₂/methanol): mp 156-158 °C; VIS (CH₂Cl₂) $\lambda_{max} = 695$ (rel, 0.82), 633 (0.09), 555 (0.16), 522 (0.15), 429 (1.00), 387 nm (0.84); ¹H-NMR (CDCl₃) δ = 11.56 (1H, s, 3-CHO), 10.33, 9.63, 8.85 (each 1H, s, 5-, 10-, 20-H), 5.29, 5.19 (each 1H, d, *J* = 19 Hz, 13²-H₂), 4.60 (1H, dq, *J* = 2, 8 Hz, 18-H), 4.37 (1H, dt, *J* = 9, 2 Hz, 17-H), 4.12 (2H, t, *J* = 7 Hz, 17²-CH₂), 3.74 (2H, q, *J* = 8 Hz, 8-CH₂), 3.79, 3.73, 3.33 (each 3H, s, 2-, 7-, 12-CH₃), 2.45-2.39, 2.14-2.08, 1.95-1.87, 1.69-1.63 (each 1H, m, 17-CH₂CH₂), 2.26, 2.23 (each 1H, dt, *J* = 15, 8 Hz, 17³-OCOC(H₂), 1.87 (3H, d, *J* = 8 Hz, 18-CH₃), 1.73 (3H, t, *J* = 8 Hz, 8¹-CH₃), 1.25-1.15 (18H, m, 17³-OCOC(CH₂)), 0.84 (3H, t, *J* = 7 Hz, 17³-OCOC₁₀CH₃), -0.09, -2.03 (each 1H, s, NH × 2); MS (ESI) found: *m/z* 705. Calcd. for C₄₄H₅₇N₄O₄: MH⁺, 705.

17²-Decarboxy-17²-docosanoyloxymethyl-pyropheophorbide-*d* (9c). Similarly to synthesis of **9a**, esterification of **8** (90.0 mg, 172 μmol) with docosanoic acid (behenic acid, 239.0 mg, 702 μmol) in CH₂Cl₂ (70 ml) of EDC·HCl (197.7 mg, 1031 μmol) and DMAP (84.0 mg, 688 μmol) for 21 h gave **9c** (114.5 mg, 79%) as a black solid after FCC (5% Et₂O/CH₂Cl₂) and recrystallization (CH₂Cl₂/methanol): mp 153-155 °C; VIS (CH₂Cl₂) $\lambda_{max} = 694$ (rel, 0.82), 633 (0.10), 554 (0.17), 522 (0.16), 429 (1.00), 387 nm (0.85); ¹H-NMR (CDCl₃) $\delta = 11.55$ (1H, s, 3-CHO), 10.30, 9.60, 8.85 (each 1H, s, 5-, 10-, 20-H), 5.29, 5.18 (each 1H, d, *J* = 19 Hz, 13²-H₂), 4.60 (1H, dq, *J* = 2, 7 Hz, 18-H), 4.37 (1H, dt, *J* = 9, 3 Hz, 17-H), 4.12 (2H, t, *J* = 7 Hz, 17²-CH₂), 3.73 (2H, q, *J* = 8 Hz, 8-CH₂), 3.78, 3.72, 3.32 (each 3H, s, 2-, 7-, 12-CH₃), 2.44-2.40, 2.14-2.08, 1.95-1.89, 1.69-1.63 (each 1H, m, 17-CH₂CH₂), 2.25 (2H, t, *J* = 7 Hz, 17³-OCOC(2₁), 1.87 (3H, d, *J* = 7 Hz, 18-CH₃), 1.72 (3H, t, *J* = 8 Hz, 8¹-CH₃), 1.30-1.15 (38H, m, 17³-OCOC(CH₂)₁₉), 0.87 (3H, t, *J* = 7 Hz, 17³-OCOC₂₀CH₃), -0.12, -2.04 (each 1H, s, NH × 2); MS (ESI) found: *m/z* 845. Calcd. for C₅₄H₇₇N₄O₄: MH⁺, 845.

17²-Decarboxy-17²-pivaloyloxymethyl-pyropheophorbide-*d* (**9d**). Similarly to synthesis of **9a**, esterification of **8** (102.0 mg, 195 μmol) with 2,2-dimethylpropanoic acid (pivalic acid, 99.0 mg, 969 μmol) in CH₂Cl₂ (70 ml) of EDC·HCl (332.0 mg, 1732 μmol) and DMAP (156.7 mg, 1282 μmol) for 62 h to give **9d** (37.5 mg, 32%) as a black solid after FCC (5% Et₂O/CH₂Cl₂) and recrystallization (CH₂Cl₂/hexane): mp 253-257 °C; VIS (CH₂Cl₂) $\lambda_{max} = 695$ (rel, 0.81), 633 (0.10), 554 (0.17), 522 (0.16), 429 (1.00), 387 nm (0.85); ¹H-NMR (CDCl₃) $\delta = 11.57$ (1H, s, 3-CHO), 10.34, 9.64, 8.86 (each 1H, s, 5-, 10-, 20-H), 5.27, 5.29 (each 1H, d, *J* = 19 Hz, 13²-H₂), 4.60 (1H, dq, *J* = 2, 7 Hz, 18-H), 4.38 (1H, dt, *J* = 9, 3 Hz, 17-H), 4.10 (2H, t, *J* = 7 Hz, 17²-CH₂), 3.75 (2H, q, *J* = 8 Hz, 8-CH₂), 3.79, 3.74, 3.34 (each 3H, s, 2-, 7-, 12-CH₃), 2.45-2.40, 2.15-2.09, 1.95-1.89, 1.69-1.61 (each 1H, m, 17-CH₂CH₂), 1.87 (3H, d, *J* = 7 Hz, 18-CH₃), 1.73 (3H, t, *J* = 8 Hz, 8¹-CH₃), 1.15 (9H, s, 17³-OCOC(CH₃)₃), -0.08, -2.01 (each 1H, s, NH × 2); MS (ESI) found: *m/z* 607. Calcd. for C₃₇H₄₃N₄O₄: MH⁺, 607.

To a dry THF (2 ml) and CH₂Cl₂ solution (20 ml) of **8** (100.0 mg, 191 μ mol) with stirring, a dry CH₂Cl₂ solution (20 ml) of pivaloyl chloride (1854 mg, 15.4 mmol) and triethylamine (956.0 mg, 9.45 mmol) at room temperature under N₂. After heating at 45 °C for 4 h, the reaction mixture was treated with the similar work-up as mentioned above to give **9d** (84.5 mg, 72%).

17²-Benzoyloxymethyl-17²-decarboxy-pyropheophorbide-*d* (**9e**). Similarly to synthesis of **9a**, esterification of **8** (69.0 mg, 132 μmol) with benzoic acid (71.4 mg, 855 μmol) in CH₂Cl₂ (60 ml) of EDC·HCl (185.5 mg, 968 μmol) and DMAP (68.5 mg, 561 μmol) gave **9e** (45.5 mg, 55%) as a black solid after FCC (4-5% Et₂O/CH₂Cl₂) and recrystallization (CH₂Cl₂/hexane): mp 95-99 °C; VIS (CH₂Cl₂) $\lambda_{max} = 694$ (rel, 0.80), 633 (0.10), 554 (0.17), 522 (0.16), 429 (1.00), 387 nm (0.85); ¹H-NMR (CDCl₃) $\delta = 11.55$ (1H, s, 3-CHO), 10.31, 9.61, 8.86 (each 1H, s, 5-, 10-, 20-H), 7.96, 7.95 (2H, dd, *J* = 1, 8 Hz, 2-, 6-H of Ph), 7.53 (1H, tt, *J* = 1, 7 Hz, 4-H of Ph), 7.39 (2H, t, *J* = 8 Hz, 3-, 5-H of Ph), 5.30, 5.20 (each 1H, d, *J* = 19 Hz, 13²-H₂), 4.64 (1H, dq, *J* = 2, 7 Hz, 18-H), 4.42 (1H, dt, *J* = 9, 3 Hz, 17-H), 4.36 (2H, t, *J* = 7 Hz, 17²-CH₂), 3.73 (2H, q, *J* = 8 Hz, 8-CH₂), 3.78,

3.72, 3.32 (each 3H, s, 2-, 7-, 12-CH₃), 2.55-2.49, 2.26-2.19, 2.08-1.99, 1.78-1.74 (each 1H, m, 17-CH₂CH₂), 1.88 (3H, d, *J* = 7 Hz, 18-CH₃), 1.72 (3H, t, *J* = 8 Hz, 8¹-CH₃), -0.11, -2.04 (each 1H, s, NH × 2); MS (ESI) found: *m/z* 627. Calcd. for C₃₉H₃₉N₄O₄: MH⁺, 627.

Ethyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-*a* **(6a). Borane** *t***-butylamine complex (***t***BuNH₂·BH₃, 13.3 mg, 153 μmol) was added to a CH₂Cl₂ solution (10 ml) of 5a** (57.8 mg, 102 μmol) at room temperature. After stirring for 2 h, the reaction mixture was washed with aq. 2% HCl, aq. 4% NaHCO₃ and H₂O, dried over Na₂SO₄ and evaporated to dryness. The residue was purified by FCC (20-24% Et₂O/CH₂Cl₂) and recrystallization (CH₂Cl₂/hexane) to give **6a** (51.2 mg, 88%) as a black green solid: mp 227-232 °C; VIS (CH₂Cl₂) $\lambda_{max} = 662$ (rel., 0.48), 606 (0.08), 535 (0.09), 504 (0.10), 410 nm (1.00); ¹H-NMR (CDCl₃) $\delta = 9.47$, 9.43, 8.55 (each 1H, s, 5-, 10-, 20-H), 5.90 (2H, s, 3-CH₂), 5.22, 5.08 (each 1H, d, *J* = 19 Hz, 13²-H₂), 4.47 (1H, dq, *J* = 2, 7 Hz, 18-H), 4.26 (1H, dt, *J* = 9, 2 Hz, 17-H), 4.14-4.04 (2H, m, 17²-COOCH₂), 3.68 (2H, q, *J* = 8 Hz, 8-CH₂), 3.64, 3.42, 3.26 (each 3H, s, 2-, 7-, 12-CH₃), 2.69-2.64, 2.56-2.51, 2.28-2.22 (1H+1H+2H, m, 17²-COOCCH₃), 0.25, -1.82 (each 1H, s, NH × 2); MS (ESI) found: *m/z* 567. Calcd. for C₃₄H₃₉N₄O₄: MH⁺, 567.

Dodecyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-*a* (6b). Similarly to synthesis of 6a, reduction of 5b (51.0 mg, 72 μmol) by *t*BuNH₂·BH₃ (9.4 mg, 108 μmol) in CH₂Cl₂ (10 ml) gave 6b (37.7 mg, 74%) as a black solid after FCC (6-10% Et₂O/CH₂Cl₂) and recrystallization (CH₂Cl₂/hexane): mp 118-121 °C; VIS (CH₂Cl₂) $\lambda_{max} = 662$ (rel., 0.49), 605 (0.08), 535 (0.09), 504 (0.10), 410 nm (1.00); ¹H-NMR (CDCl₃) $\delta = 9.48$, 9.44, 8.56 (each 1H, s, 5-, 10-, 20-H), 5.91 (2H, s, 3-CH₂), 5.24, 5.09 (each 1H, d, *J* = 19 Hz, 13²-H₂), 4.48 (1H, dq, *J* = 2, 8 Hz, 18-H), 4.28 (1H, dt, *J* = 9, 2 Hz, 17-H), 4.02-3.92 (2H, m, 17²-COOCH₂), 3.69 (2H, q, *J* = 8 Hz, 8-CH₂), 3.65, 3.42, 3.26 (each 3H, s, 2-, 7-, 12-CH₃), 2.70-2.64, 2.56-2.51, 2.31-2.23 (1H+1H+2H, m, 17-CH₂CH₂), 1.80 (3H, d, *J* = 8 Hz, 18-CH₃), 1.69 (3H, t, *J* = 8 Hz, 8¹-CH₃), 1.26-1.18 (20H, m,

 17^{2} -COOCC₁₀H₂₀), 0.84 (3H, t, J = 7 Hz, 17^{2} -COOC₁₁CH₃), 0.27, -1.81 (each 1H, s, NH × 2); MS (ESI) found: m/z 707. Calcd. for C₄₄H₅₉N₄O₄: MH⁺, 707.

Docosyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-*a* (6c). Similarly to synthesis of 6a, reduction of 5c (85.3 mg, 101 μmol) by *t*BuNH₂·BH₃ (13.2 mg, 152 μmol) in CH₂Cl₂ (20 ml) gave 6c (66.2 mg, 77%) as a dark green solid after FCC (4-6% Et₂O/CH₂Cl₂) and recrystallization (CH₂Cl₂/methanol): mp 130-132 °C; VIS (CH₂Cl₂) $\lambda_{max} = 662$ (rel., 0.49), 605 (0.09), 536 (0.10), 505 (0.10), 410 nm (1.00); ¹H-NMR (CDCl₃) $\delta = 9.49$, 9.44, 8.56 (each 1H, s, 5-, 10-, 20-H), 5.91 (2H, s, 3-CH₂), 5.24, 5.09 (each 1H, d, *J* = 19 Hz, 13²-H₂), 4.49 (1H, dq, *J* = 2, 7 Hz, 18-H), 4.28 (1H, br-d, *J* = 9 Hz, 17-H), 4.02-3.92 (2H, m, 17²-COOCH₂), 3.69 (2H, q, *J* = 8 Hz, 8-CH₂), 3.65, 3.42, 3.26 (each 3H, s, 2-, 7-, 12-CH₃), 2.70-2.64, 2.56-2.51, 2.32-2.23 (1H+1H+2H, m, 17-CH₂CH₂), 1.80 (3H, d, *J* = 7 Hz, 18-CH₃), 1.69 (3H, t, *J* = 8 Hz, 8¹-CH₃), 1.30-1.18 (40H, m, 17²-COOCC₂₀H₄₀), 0.87 (3H, t, *J* = 7 Hz, 17²-COOCC₂₁CH₃), 0.28, -1.80 (each 1H, s, NH × 2); MS (ESI) found: *m/z* 847. Calcd. for C₅₄H₇₉N₄O₄: MH⁺, 847.

Neopentyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-*a* (6d). Similarly to synthesis of 6a, reduction of 5d (46.3 mg, 76 µmol) by *t*BuNH₂·BH₃ (10.0 mg, 115 µmol) in CH₂Cl₂ (10 ml) gave 6d (37.4 mg, 81%) as a black solid after FCC (5-7% Et₂O/CH₂Cl₂) and recrystallization (CH₂Cl₂/hexane): mp 205-207 °C; VIS (CH₂Cl₂) $\lambda_{max} = 662$ (rel., 0.49), 605 (0.08), 535 (0.09), 504 (0.10), 410 nm (1.00); ¹H-NMR (CDCl₃) $\delta = 9.50$, 9.45, 8.57 (each 1H, s, 5-, 10-, 20-H), 5.91 (2H, s, 3-CH₂), 5.23, 5.10 (each 1H, d, *J* = 20 Hz, 13²-H₂), 4.50 (1H, dq, *J* = 2, 7 Hz, 18-H), 4.30 (1H, br-d, *J* = 8 Hz, 17-H), 3.77, 3.71 (each 1H, d, *J* = 11 Hz, 17²-COOCH₂), 3.70 (2H, q, *J* = 8 Hz, 8-CH₂), 3.66, 3.43, 3.26 (each 3H, s, 2-, 7-, 12-CH₃), 2.72-2.66, 2.59-2.54, 2.36-2.27 (1H+1H+2H, m, 17-CH₂CH₂), 1.81 (3H, d, *J* = 7 Hz, 18-CH₃), 1.69 (3H, t, *J* = 8 Hz, 8¹-CH₃), 0.85 (9H, s, 17²-COOCC(CH₃)₃), 0.28, -1.79 (each 1H, s, NH × 2); MS (ESI) found: *m/z* 609. Calcd. for C₃₇H₄SN₄O₄: MH⁺, 609.

Benzyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-*a* (6e). Similarly to synthesis of 6a, reduction of 5e (72.6 mg, 116 μmol) by *t*BuNH₂·BH₃ (15.1 mg, 174 μmol) in CH₂Cl₂ (20 ml) gave 6e (64.3 mg, 88%) as a black green solid after FCC (4-6% Et₂O/CH₂Cl₂) and recrystallization (CH₂Cl₂/hexane): mp 206-210 °C; VIS (CH₂Cl₂) $\lambda_{max} = 662$ (rel., 0.48), 606 (0.08), 535 (0.09), 504 (0.10), 410 nm (1.00); ¹H-NMR (CDCl₃) $\delta = 9.52$, 9.46, 8.55 (each 1H, s, 5-, 10-, 20-H), 7.26-7.24 (3H, m, 3-, 4-, 5-H of Ph), 7.22-7.21 (2H, m, 2-, 6-H of Ph), 5.92 (2H, s, 3-CH₂), 5.23, 5.06 (each 1H, d, *J* = 19 Hz, 13²-H₂), 5.05, 5.00 (each 1H, d, *J* = 12 Hz, 17²-COOCH₂), 4.46 (1H, dq, *J* = 2, 7 Hz, 18-H), 4.28 (1H, br-d, *J* = 8 Hz, 17-H), 3.70 (2H, q, *J* = 8 Hz, 8-CH₂), 3.67, 3.42, 3.27 (each 3H, s, 2-, 7-, 12-CH₃), 2.73-2.67, 2.61-2.56, 2.35-2.22 (1H+1H+2H, m, 17-CH₂CH₂), 1.77 (3H, d, *J* = 7 Hz, 18-CH₃), 1.70 (3H, t, *J* = 8 Hz, 8¹-CH₃), 0.31, -1.79 (each 1H, s, NH × 2); MS (ESI) found: *m/z* 629. Calcd. for C₃₉H₄₁N₄O₄: MH⁺, 629.

17²-Acetoxymethyl-17²-decarboxy-3-devinyl-3-hydroxymethyl-pyropheophorbide-*a* (10a). Similarly to synthesis of **6a**, reduction of **9a** (89.5 mg, 159 μmol) by *t*BuNH₂·BH₃ (20.2 mg, 232 μmol) in CH₂Cl₂ (20 ml) gave **10a** (88.3 mg, 98%) as a black solid after FCC (15-23% Et₂O/CH₂Cl₂) and recrystallization (CH₂Cl₂/hexane): mp 226-231 °C; VIS (CH₂Cl₂) $\lambda_{max} = 662$ (rel., 0.49), 605 (0.09), 535 (0.11), 504 (0.12), 410 nm (1.00); ¹H-NMR (CDCl₃) $\delta = 9.47$, 9.44, 8.57 (each 1H, s, 5-, 10-, 20-H), 5.91 (2H, s, 3-CH₂), 5.20, 5.09 (each 1H, d, *J* = 19 Hz, 13²-H₂), 4.50 (1H, dq, *J* = 2, 8 Hz, 18-H), 4.27 (1H, dt, *J* = 9, 3 Hz, 17-H), 4.10 (2H, t, *J* = 7 Hz, 17²-CH₂), 3.69 (2H, q, *J* = 8 Hz, 8-CH₂), 3.66, 3.43, 3.26 (each 3H, s, 2-, 7-, 12-CH₃), 2.41-2.35, 2.12-2.04, 1.93-1.84, 1.67-1.60 (each 1H, m, 17-CH₂CH₂), 2.01 (3H, s, 17³-OCOCH₃), 1.82 (3H, d, *J* = 8 Hz, 18-CH₃), 1.70 (3H, t, *J* = 8 Hz, 8¹-CH₃), 0.33, -1.76 (each 1H, s, NH × 2); MS (ESI) found: *m/z* 567. Calcd. for C₁₄H₃₉N₄O₄: MH⁺, 567.

17²-Decarboxy-3-devinyl-17²-dodecanoyloxymethyl-3-hydroxymethyl-pyropheophorbide*a* (**10b**). Similarly to synthesis of **6a**, reduction of **9b** (99.7 mg, 141 μmol) by *t*BuNH₂·BH₃ (18.4 mg, 212 μmol) in CH₂Cl₂ (20 ml) gave **10b** (84.5 mg, 85%) as a black solid after FCC (6-15%)

Et₂O/CH₂Cl₂) and recrystallization (CH₂Cl₂/methanol): mp 118-120 °C; VIS (CH₂Cl₂) $\lambda_{max} = 662$ (rel., 0.48), 605 (0.09), 535 (0.10), 504 (0.11), 410 nm (1.00); ¹H-NMR (CDCl₃) $\delta = 9.54$, 9.46, 8.58 (each 1H, s, 5-, 10-, 20-H), 5.93 (2H, s, 3-CH₂), 5.22, 5.10 (each 1H, d, J = 19 Hz, 13^2 -H₂), 4.51 (1H, dq, J = 2, 7 Hz, 18-H), 4.29 (1H, dt, J = 9, 3 Hz, 17-H), 4.10 (2H, t, J = 7 Hz, 17^2 -CH₂), 3.71 (2H, q, J = 8 Hz, 8-CH₂), 3.69, 3.43, 3.27 (each 3H, s, 2-, 7-, 12-CH₃), 2.42-2.36, 2.12-2.06, 1.92-1.85, 1.68-1.61 (each 1H, m, 17-CH₂CH₂), 2.24 (3H, t, J = 8 Hz, 17^3 -OCOC(H₂), 1.83 (3H, d, J = 7 Hz, 17^3 -OCOC(CH₂)₉), 0.84 (3H, t, J = 7 Hz, 17^3 -OCOC(CH₃), 0.36, -1.74 (each 1H, s, NH × 2); MS (ESI) found: *m*/*z* 707. Calcd. for C₄₄H₅₉N₄O₄: MH⁺, 707.

17²-Decarboxy-3-devinyl-17²-docosanoyloxymethyl-3-hydroxymethyl-pyropheophorbide-*a* (10c). Similarly to synthesis of **6a**, reduction of **9c** (101.0 mg, 120 μ mol) by *t*BuNH₂·BH₃ (17.0

mg, 196 μmol) in CH₂Cl₂ (20 ml) gave **10c** (94.3 mg, 93%) as a black solid after FCC (8-15% Et₂O/CH₂Cl₂) and recrystallization (CH₂Cl₂/methanol): mp 130-131 °C; VIS (CH₂Cl₂) $\lambda_{max} = 662$ (rel., 0.49), 605 (0.09), 535 (0.11), 504 (0.11), 410 nm (1.00); ¹H-NMR (CDCl₃) $\delta = 9.51$, 9.44, 8.57 (each 1H, s, 5-, 10-, 20-H), 5.91 (2H, s, 3-CH₂), 5.21, 5.09 (each 1H, d, J = 19 Hz, 13²-H₂), 4.51 (1H, dq, J = 2, 7 Hz, 18-H), 4.27 (1H, dt, J = 9, 2 Hz, 17-H), 4.10 (2H, t, J = 7 Hz, 17²-CH₂), 3.70 (2H, q, J = 8 Hz, 8-CH₂), 3.68, 3.43, 3.26 (each 3H, s, 2-, 7-, 12-CH₃), 2.41-2.35, 2.11-2.04, 1.92-1.85, 1.66-1.61 (each 1H, m, 17-CH₂CH₂), 2.25 (3H, t, J = 7 Hz, 17³-OCOC(H₂)₁), 0.87 (3H, t, J = 7 Hz, 17³-OCOC₂₀CH₃), 0.07, -1.76 (each 1H, s, NH × 2); MS (ESI) found: *m/z* 847. Calcd. for C₅₄H₇₉N₄O₄: MH⁺, 847.

17²-Decarboxy-3-devinyl-3-hydroxymethyl-17²-pivaloyloxymethyl-pyropheophorbide-*a* (10d). Similarly to synthesis of **6a**, reduction of **9d** (109.0 mg, 180 μmol) by *t*BuNH₂·BH₃ (26.7 mg, 307 μmol) in CH₂Cl₂ (20 ml) gave **10d** (97.1 mg, 89%) as a black solid after FCC (6-10% Et₂O/CH₂Cl₂) and recrystallization (CH₂Cl₂/hexane): mp 238-241 °C; VIS (CH₂Cl₂) $\lambda_{max} = 662$ (rel., 0.49), 606

(0.08), 535 (0.09), 505 (0.10), 410 nm (1.00); ¹H-NMR (CDCl₃) δ = 9.53, 9.45, 8.58 (each 1H, s, 5-, 10-, 20-H), 5.92 (2H, s, 3-CH₂), 5.20, 5.09 (each 1H, d, *J* = 19 Hz, 13²-H₂), 4.51 (1H, dq, *J* = 2, 7 Hz, 18-H), 4.29 (1H, dt, *J* = 9, 2 Hz, 17-H), 4.09 (2H, t, *J* = 7 Hz, 17²-CH₂), 3.70 (2H, q, *J* = 8 Hz, 8-CH₂), 3.68, 3.43, 3.27 (each 3H, s, 2-, 7-, 12-CH₃), 2.44-2.36, 2.13-2.06, 1.91-1.85, 1.67-1.61 (each 1H, m, 17-CH₂CH₂), 1.83 (3H, d, *J* = 7 Hz, 18-CH₃), 1.70 (3H, t, *J* = 8 Hz, 8¹-CH₃), 1.15 (9H, s, 17³-OCOC(CH₃)₃), 0.35, -1.75 (each 1H, s, NH × 2); MS (ESI) found: *m/z* 609. Calcd. for C₃₇H₄₅N₄O₄: MH⁺, 609.

17²-Benzoyloxymethyl-17²-decarboxy-3-devinyl-3-hydroxymethyl-pyropheophorbide*-a* (10e). Similarly to synthesis of **6a**, reduction of **9e** (69.0 mg, 110 μmol) by *t*BuNH₂·BH₃ (16.0 mg, 184 μmol) in CH₂Cl₂ (10 ml) gave **10e** (64.7 mg, 94%) as a black green solid after FCC (8-10% Et₂O/CH₂Cl₂) and recrystallization (CH₂Cl₂/hexane): mp 124-126 °C; VIS (CH₂Cl₂) $\lambda_{max} = 662$ (rel., 0.49), 606 (0.09), 535 (0.10), 505 (0.11), 410 nm (1.00); ¹H-NMR (CDCl₃) $\delta = 9.53$, 9.46, 8.59 (each 1H, s, 5-, 10-, 20-H), 7.97 (each 1H, dd, *J* = 1, 8 Hz, 2-, 6-H of Ph), 7.52 (1H, tt, *J* = 1, 7 Hz, 4-H of Ph), 7.40 (2H, t, *J* = 8 Hz, 3-, 5-H of Ph), 5.93 (2H, s, 3-CH₂), 5.23, 5.11 (each 1H, d, *J* = 19 Hz, 13²-H₂), 4.55 (1H, dq, *J* = 2, 8 Hz, 18-H), 4.36, 4.34 (each 1H, dt, *J* = 11, 6 Hz, 17²-CH₂), 4.34 (1H, dt, *J* = 9, 3 Hz, 17-H), 3.71 (2H, q, *J* = 8 Hz, 8-CH₂), 3.68, 3.43, 3.27 (each 3H, s, 2-, 7-, 12-CH₃), 2.51-2.46, 2.23-2.17, 2.05-1.97, 1.77-1.73 (each 1H, m, 17-CH₂CH₂), 1.84 (3H, d, *J* = 8 Hz, 18-CH₃), 1.70 (3H, t, *J* = 8 Hz, 8¹-CH₃), 0.35, -1.75 (each 1H, s, NH × 2); MS (ESI) found: *m/z* 629. Calcd. for C₃₉H₄₁N₄O₄: MH⁺, 629.

Zinc ethyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-*a* (1a). A methanol solution (0.3 ml) saturated with $Zn(OAc)_2 \cdot 2H_2O$ was added to a CH_2Cl_2 solution (5 ml) of **6a** (5.3 mg, 9.3 µmol). After stirring for 2 h, the solution was washed with aq. 4% NaHCO₃ and H₂O, dried over Na₂SO₄ and evaporated to dryness. The residue was purified by RP-HPLC (methanol) to give **1a** [the retention (RT) time was 17.4 min] as a dark green solid: VIS (THF) $\lambda_{max} = 647$ (rel., 0.74), 600

(0.11), 566 (0.06), 521 (0.04), 424 (1.00) and 404 nm (0.55); MS (APCI) found: m/z 629. Calcd. for C₃₄H₃₆N₄O₄⁶⁴Zn: MH⁺, 629.

Zinc dodecyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-*a* (1b). Similarly to synthesis of 1a, zinc-metallation of 6b (6.3 mg, 8.9 µmol) gave 1b as a dark green solid after NP-HPLC [methanol-THF-hexane = 2:25:175 (v/v), RT = 18.1 min]: VIS (THF) λ_{max} = 647 (rel., 0.74), 601 (0.10), 563 (0.06), 518 (0.04), 424 (1.00) and 404 nm (0.55); MS (APCI) found: *m/z* 769. Calcd. for C₄₄H₅₆N₄O₄⁶⁴Zn: MH⁺, 769.

Zinc docosyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-*a* (1c). Similarly to synthesis of 1a, zinc-metallation of 6c (5.5 mg, 6.5 µmol) gave 1c as a dark green solid after NP-HPLC [methanol-THF-hexane = 2:25:175 (v/v), RT = 16.2 min]: VIS (THF) λ_{max} = 647 (rel., 0.72), 601 (0.11), 566 (0.06), 521 (0.04), 424 (1.00) and 404 nm (0.55); MS (APCI) found: *m/z* 909. Calcd. for C₅₄H₇₆N₄O₄⁶⁴Zn: MH⁺, 909.

Zinc neopentyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-*a* (1d). Similarly to synthesis of 1a, zinc-metallation of 6d (4.7 mg, 7.7 µmol) gave 1d as a dark green solid after RP-HPLC (methanol, RT = 19.6 min): VIS (THF) $\lambda_{max} = 647$ (rel., 0.74), 600 (0.11), 566 (0.06), 521 (0.04), 424 (1.00) and 404 nm (0.56); MS (APCI) found: *m/z* 671. Calcd. for C₃₇H₄₂N₄O₄⁶⁴Zn: MH⁺, 671.

Zinc benzyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-*a* (1e). Similarly to synthesis of 1a, zinc-metallation of 6e (4.5 mg, 7.2 µmol) gave 1e as a dark green solid after RP-HPLC (methanol, RT = 18.5 min): VIS (THF) $\lambda_{max} = 647$ (rel., 0.75), 601 (0.11), 566 (0.06), 521 (0.04), 424 (1.00) and 404 nm (0.56); MS (APCI) found: *m/z* 691. Calcd. for C₃₉H₃₈N₄O₄⁶⁴Zn: MH⁺, 691.

Zinc 17^2 -acetoxymethyl- 17^2 -decarboxy-3-devinyl-3-hydroxymethyl-pyropheophorbide-*a* (2a). Similarly to synthesis of 1a, zinc-metallation of 10a (5.5 mg, 9.7 µmol) gave 2a as a dark green

solid after RP-HPLC (methanol, RT = 18.0 min): VIS (THF) λ_{max} = 647 (rel., 0.75), 601 (0.10), 565 (0.06), 520 (0.04), 425 (1.00) and 405 nm (0.56); MS (APCI) found: *m/z* 629. Calcd. for C₃₄H₃₆N₄O₄⁶⁴Zn: MH⁺, 629.

Zinc 17²-decarboxy-3-devinyl-17²-dodecanoyloxymethyl-3-hydroxymethyl-

pyropheophorbide-*a* (2b). Similarly to synthesis of 1a, zinc-metallation of 10b (6.2 mg, 8.8 μ mol) gave 2b as a dark green solid after RP-HPLC [pyridine-acetonitrile-ethyl acetate = 1:50:50 (v/v), RT = 15.3 min]: VIS (THF) $\lambda_{max} = 647$ (rel., 0.75), 601 (0.10), 565 (0.05), 522 (0.03), 425 (1.00) and 405 nm (0.55); MS (APCI) found: *m/z* 769. Calcd. for C₄₄H₅₆N₄O₄⁶⁴Zn: MH⁺, 769.

Zinc 17²-decarboxy-3-devinyl-17²-docosanoyloxymethyl-3-hydroxymethyl-

pyropheophorbide-*a* (2c). Similarly to synthesis of 1a, zinc-metallation of 10c (5.8 mg, 6.9 μ mol) gave 2c as a dark green solid after RP-HPLC [pyridine-acetonitrile-ethyl acetate = 1:50:50 (v/v), RT = 23.2 min]: VIS (THF) $\lambda_{max} = 647$ (rel., 0.73), 601 (0.10), 565 (0.05), 521 (0.03), 425 (1.00) and 404 nm (0.55); MS (APCI) found: *m/z* 909. Calcd. for C₅₄H₇₆N₄O₄⁶⁴Zn: MH⁺, 909.

Zinc 17²-decarboxy-3-devinyl-3-hydroxymethyl-17²-pivaloyloxymethyl-pyropheophorbide-*a* (2d). Similarly to synthesis of 1a, zinc-metallation of 10d (6.3 mg, 10.4 µmol) gave 2d as a dark green solid after RP-HPLC (methanol, RT = 21.2 min): VIS (THF) $\lambda_{max} = 647$ (rel., 0.75), 601 (0.10), 565 (0.06), 523 (0.04), 425 (1.00) and 405 nm (0.56); MS (APCI) found: *m/z* 671. Calcd. for C₃₇H₄₂N₄O₄⁶⁴Zn: MH⁺, 671.

Zinc 17²-benzoyloxymethyl-17²-decarboxy-3-devinyl-3-hydroxymethyl-pyropheophorbide-*a* (2e). Similarly to synthesis of 1a, zinc-metallation of 10e (5.8 mg, 9.2 µmol) gave 2e as a dark green solid after RP-HPLC (methanol, RT = 22.6 min): VIS (THF) $\lambda_{max} = 647$ (rel., 0.74), 602 (0.10), 564 (0.06), 521 (0.04), 425 (1.00) and 405 nm (0.58); MS (APCI) found: *m/z* 691. Calcd. for C₃₉H₃₈N₄O₄⁶⁴Zn: MH⁺, 691.