Synthesis of zinc bacteriochlorophyll-d analogues with various 17-substituents and their chlorosomal self-aggregates in non-polar organic solvents \dagger

Hitoshi Tamiaki,* Tomotaka Michitsuji and Reiko Shibata

Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.

E-mail: tamiaki@se.ritsumei.ac.jp; Fax: +81-77-561-2659

Synthetic procedures of novel chlorins and their spectral data

Ethyl pyropheophorbide-d (5a). Into a dry toluene solution (30 ml) of 4 ($102 \mathrm{mg}, 185 \mu \mathrm{~mol}$), ethanol ($8.73 \mathrm{~g}, 189 \mathrm{mmol}$) and bis(dibutylchlorotin)oxide ($14.1 \mathrm{mg}, 25 \mu \mathrm{~mol}$) were added, stirred and refluxed for 27 h . After evaporating the solvent, the residue was purified by FCC (4% $\left.\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $)$ to give $\mathbf{5 a}(62.3 \mathrm{mg}, 60 \%)$ as a black solid: mp $222-225{ }^{\circ} \mathrm{C}$; VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }=694$ (relative intensity, 0.80$), 632$ (0.09), 554 (0.16), 521 (0.15), 429 (1.00), $388 \mathrm{~nm}(0.84) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=11.55(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{CHO}), 10.30,9.61,8.84$ (each 1 H , s, $5-, 10-, 20-\mathrm{H}), 5.34,5.19$ (each $\left.1 \mathrm{H}, \mathrm{d}, J=20 \mathrm{~Hz}, 13^{2}-\mathrm{H}_{2}\right), 4.58(1 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}, 18-\mathrm{H}), 4.39(1 \mathrm{H}$, d, $J=7 \mathrm{~Hz}, 17-\mathrm{H}), 4.13-4.02\left(2 \mathrm{H}, \mathrm{m}, 17^{2}-\mathrm{COOCH}_{2}\right), 3.77,3.72,3.32\left(\right.$ each $\left.3 \mathrm{H}, \mathrm{s}, 2-, 7-, 12-\mathrm{CH}_{3}\right)$, $3.72\left(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}, 8-\mathrm{CH}_{2}\right), 2.75-2.70,2.62-2.54,2.35-2.26\left(1 \mathrm{H}+1 \mathrm{H}+2 \mathrm{H}, \mathrm{m}, 17-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.85$ $\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, 18-\mathrm{CH}_{3}\right), 1.72\left(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, 8^{1}-\mathrm{CH}_{3}\right), 1.16\left(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, 17^{2}-\mathrm{COOCCH}_{3}\right)$, $-0.13,-2.06$ (each $1 \mathrm{H}, \mathrm{s}, \mathrm{NH} \times 2$); MS (APCI) found: $m / z 565$. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{MH}^{+}, 565$.

Dodecyl pyropheophorbide- \boldsymbol{d} (5b). Similarly to synthesis of 5a, transesterification of $\mathbf{4}$ (101 mg, $183 \mu \mathrm{~mol}$) with 1-dodecanol ($293 \mathrm{mg}, 1.85 \mathrm{mmol}$) in toluene (30 ml) of tin-catalyst ($10.3 \mathrm{mg}, 18.7$ $\mu \mathrm{mol})$ for 5 h gave $\mathbf{5 b}(83.0 \mathrm{mg}, 64 \%)$ as a black solid after FCC $\left(3-4 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol $)$: $\mathrm{mp} 125-130{ }^{\circ} \mathrm{C}$; VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }=694$ (rel., 0.80$), 632$ (0.09), 554 (0.17), 521 (0.15), $428(1.00), 388 \mathrm{~nm}(0.84) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=11.57(1 \mathrm{H}, \mathrm{s}$, $3-\mathrm{CHO}$), $10.33,9.64,8.85$ (each $1 \mathrm{H}, \mathrm{s}, 5-, 10-, 20-\mathrm{H}$), $5.35,5.20$ (each $1 \mathrm{H}, \mathrm{d}, J=20 \mathrm{~Hz}, 13^{2}-\mathrm{H}_{2}$), $4.58(1 \mathrm{H}, \mathrm{dq}, J=2,8 \mathrm{~Hz}, 18-\mathrm{H}), 4.40(1 \mathrm{H}, \mathrm{dt}, J=9,2 \mathrm{~Hz}, 17-\mathrm{H}), 4.00-3.91\left(2 \mathrm{H}, \mathrm{m}, 17^{2}-\mathrm{COOCH}_{2}\right)$, 3.79, 3.73, 3.34 (each $\left.3 \mathrm{H}, \mathrm{s}, 2-, 7-, 12-\mathrm{CH}_{3}\right), 3.74\left(2 \mathrm{H}, \mathrm{q}, J=8 \mathrm{~Hz}, 8-\mathrm{CH}_{2}\right.$), 2.76-2.69, 2.61-2.53, $2.37-2.24\left(1 \mathrm{H}+1 \mathrm{H}+2 \mathrm{H}, \mathrm{m}, 17-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.85\left(3 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, 18-\mathrm{CH}_{3}\right), 1.73(3 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}$, $\left.8^{1}-\mathrm{CH}_{3}\right), 1.25-1.17\left(20 \mathrm{H}, \mathrm{m}, 17^{2}-\mathrm{COOCC}_{10} \mathrm{H}_{20}\right), 0.84\left(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, 17^{2}-\mathrm{COOC}_{11} \mathrm{CH}_{3}\right),-0.11$, -2.04 (each $1 \mathrm{H}, \mathrm{s}, \mathrm{NH} \times 2$); MS (APCI) found: $m / z 705$. Calcd. for $\mathrm{C}_{44} \mathrm{H}_{57} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{MH}^{+}, 705$.

Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is © The Royal Society of Chemistry and Owner Societies 2008

Docosyl pyropheophorbide- $\boldsymbol{d} \mathbf{(5 c)}$. Similarly to synthesis of 5a, transesterification of $\mathbf{4}(80 \mathrm{mg}$, $145 \mu \mathrm{~mol})$ with 1-docosanol ($469 \mathrm{mg}, 1.44 \mathrm{mmol}$) in toluene (25 ml) of tin-catalyst ($5.6 \mathrm{mg}, 10.1$ $\mu \mathrm{mol})$ for 5 h gave $\mathbf{5 c}(95.0 \mathrm{mg}, 78 \%)$ as a black solid after FCC $\left(3-4 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol): mp $110-114{ }^{\circ} \mathrm{C}$; VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }=694$ (rel., 0.80$), 632$ (0.09), 554 (0.17), 521 (0.15), $429(1.00), 388 \mathrm{~nm}(0.84) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=11.58(1 \mathrm{H}, \mathrm{s}$, $3-\mathrm{CHO}$), $10.35,9.65,8.86$ (each $1 \mathrm{H}, \mathrm{s}, 5-, 10-, 20-\mathrm{H}$), $5.34,5.23$ (each $1 \mathrm{H}, \mathrm{d}, J=20 \mathrm{~Hz}, 13^{2}-\mathrm{H}_{2}$), $4.59(1 \mathrm{H}, \mathrm{dq}, J=2,8 \mathrm{~Hz}, 18-\mathrm{H}), 4.40(1 \mathrm{H}, \mathrm{dt}, J=8,2 \mathrm{~Hz}, 17-\mathrm{H}), 4.01-3.90\left(2 \mathrm{H}, \mathrm{m}, 17^{2}-\mathrm{COOCH}_{2}\right)$, $3.80,3.74,3.35$ (each $3 \mathrm{H}, \mathrm{s}, 2-, 7-, 12-\mathrm{CH}_{3}$), $3.75\left(2 \mathrm{H}, \mathrm{q}, J=8 \mathrm{~Hz}, 8-\mathrm{CH}_{2}\right.$), 2.77-2.69, 2.62-2.54, 2.37-2.27 $\left(1 \mathrm{H}+1 \mathrm{H}+2 \mathrm{H}, \mathrm{m}, 17-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.85\left(3 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, 18-\mathrm{CH}_{3}\right), 1.74(3 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}$, $\left.8^{1}-\mathrm{CH}_{3}\right), 1.26-1.18\left(40 \mathrm{H}, \mathrm{m}, 17^{2}-\mathrm{COOCC}_{20} \mathrm{H}_{40}\right), 0.88\left(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, 17^{2}-\mathrm{COOC}_{21} \mathrm{CH}_{3}\right),-0.10$, -2.02 (each $1 \mathrm{H}, \mathrm{s}, \mathrm{NH} \times 2$); MS (APCI) found: $m / z 845$. Calcd. for $\mathrm{C}_{54} \mathrm{H}_{77} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{MH}^{+}, 845$.

Neopentyl pyropheophorbide- \boldsymbol{d} (5d). Similarly to synthesis of 5a, transesterification of $\mathbf{4}$ (85 $\mathrm{mg}, 154 \mu \mathrm{~mol}$) with 2,2-dimethylpropanol (neopentyl alcohol, $133 \mathrm{mg}, 1.51 \mathrm{mmol}$) in toluene (25 ml) of tin-catalyst ($8.9 \mathrm{mg}, 16.1 \mu \mathrm{~mol}$) for 21 h gave $\mathbf{5 d}(55.7 \mathrm{mg}, 60 \%)$ as a black solid after FCC ($4 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $)$: mp 175-180 ${ }^{\circ} \mathrm{C}$; VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }=694$ (rel., 0.81), 632 (0.09), 554 (0.17), $522(0.15), 429(1.00), 388 \mathrm{~nm}(0.84) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=$ $11.55(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{CHO}), 10.29,9.60,8.85$ (each $1 \mathrm{H}, \mathrm{s}, 5-, 10-, 20-\mathrm{H}$), $5.34,5.20$ (each $1 \mathrm{H}, \mathrm{d}, J=19$ $\left.\mathrm{Hz}, 13^{2}-\mathrm{H}_{2}\right), 4.59(1 \mathrm{H}, \mathrm{dq}, J=2,7 \mathrm{~Hz}, 18-\mathrm{H}), 4.41(1 \mathrm{H}, \mathrm{dt}, J=8,2 \mathrm{~Hz}, 17-\mathrm{H}), 3.78,3.70$ (each 1 H , d, $\left.J=10 \mathrm{~Hz}, 17^{2}-\mathrm{COOCH}_{2}\right), 3.78,3,72,3.31$ (each $\left.3 \mathrm{H}, \mathrm{s}, 2-, 7-, 12-\mathrm{CH}_{3}\right), 3.72(2 \mathrm{H}, \mathrm{q}, J=8 \mathrm{~Hz}$, 8-CH2), 2.78-2.72, 2.63-2.58, 2.37-2.29 ($\left.1 \mathrm{H}+1 \mathrm{H}+2 \mathrm{H}, \mathrm{m}, 17-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.86(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}$, $\left.18-\mathrm{CH}_{3}\right), 1.71\left(3 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, 8^{1}-\mathrm{CH}_{3}\right), 0.84\left(9 \mathrm{H}, \mathrm{s}, 17^{2}-\mathrm{COOCC}\left(\mathrm{CH}_{3}\right)_{3}\right),-0.15,-2.07$ (each 1 H , s, $\mathrm{NH} \times 2$); MS (APCI) found: $m / z 607$. Calcd. for $\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{MH}^{+}, 607$.

Benzyl pyropheophorbide- \boldsymbol{d} (5e). Similarly to synthesis of 5a, transesterification of $\mathbf{4}(97 \mathrm{mg}$, $175 \mu \mathrm{~mol}$) with benzyl alcohol ($201 \mathrm{mg}, 1.86 \mathrm{mmol}$) in toluene (30 ml) of tin-catalyst (30.0 mg , $54.2 \mu \mathrm{~mol})$ for 6 h gave $\mathbf{5 e}(77.0 \mathrm{mg}, 70 \%)$ as a black solid after FCC $\left(4-5 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and
recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol): mp 98-102 ${ }^{\circ} \mathrm{C}$; VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}=694$ (rel., 0.80$), 633$ (0.09), 555 (0.17), $522(0.15), 429(1.00), 388 \mathrm{~nm}(0.83) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=11.55(1 \mathrm{H}, \mathrm{s}$, 3-CHO), 10.31, 9.61, 8.82 (each 1H, s, 5-, 10-, 20-H), 7.26-7.25 (3H, m, 3-, 4-, 5-H of Ph), 7.21-7.19 ($2 \mathrm{H}, \mathrm{m}, 2-, 6-\mathrm{H}$ of Ph), 5.31, 5.14 (each $1 \mathrm{H}, \mathrm{d}, J=20 \mathrm{~Hz}, 13^{2}-\mathrm{H}_{2}$), 5.05, 4.98 (each 1H, d, $\left.J=12 \mathrm{~Hz}, 17^{2}-\mathrm{COOCH}_{2}\right), 4.56(1 \mathrm{H}, \mathrm{dq}, J=1,7 \mathrm{~Hz}, 18-\mathrm{H}), 4.37(1 \mathrm{H}, \mathrm{br}-\mathrm{d}, J=7 \mathrm{~Hz}, 17-\mathrm{H}), 3.77$, 3.72, 3.32 (each $3 \mathrm{H}, \mathrm{s}, 2-, 7-, 12-\mathrm{CH}_{3}$), $3.73\left(2 \mathrm{H}, \mathrm{q}, J=8 \mathrm{~Hz}, 8-\mathrm{CH}_{2}\right.$), 2.77-2.71, 2.65-2.60, 2.36-2.29 $\left(1 \mathrm{H}+1 \mathrm{H}+2 \mathrm{H}, \mathrm{m}, 17-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.82\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, 18-\mathrm{CH}_{3}\right), 1.72(3 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}$, $8^{1}-\mathrm{CH}_{3}$), $-0.14,-2.08$ (each $1 \mathrm{H}, \mathrm{s}, \mathrm{NH} \times 2$); MS (APCI) found: $m / z 627$. Calcd. for $\mathrm{C}_{39} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{4}$: $\mathrm{MH}^{+}, 627$.
$17^{\mathbf{2}}$-Acetoxymethyl-17 ${ }^{2}$-decarboxy-pyropheophorbide-d (9a). To a dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (70 ml) of $\mathbf{8}(100.0 \mathrm{mg}, 191 \mu \mathrm{~mol})$, acetic acid ($45.2 \mathrm{mg}, 764 \mu \mathrm{~mol}$),

1-[3-(N, N-dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDC $\cdot \mathrm{HCl}, 220.0 \mathrm{mg}, 1148$ $\mu \mathrm{mol})$ and DMAP $(96.7 \mathrm{mg}, 792 \mu \mathrm{~mol})$ were added at $0^{\circ} \mathrm{C}$ and stirred for 18 h under N_{2} at room temperature. The reaction mixture was washed with aq. $2 \% \mathrm{HCl}$, aq. $4 \% \mathrm{NaHCO}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The residue was purified by FCC (7\% $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $)$ to give $\mathbf{9 a}(99.7 \mathrm{mg}, 93 \%)$ as a black green solid: mp 250-252 ${ }^{\circ} \mathrm{C}$; VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}=695$ (rel., 0.81), 633 (0.09), 554 (0.16), $522(0.15), 429$ (1.00), $387 \mathrm{~nm}(0.85) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=11.56(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{CHO}), 10.31,9.62,8.85($ each $1 \mathrm{H}, \mathrm{s}$, $5-, 10-, 20-\mathrm{H}), 5.29,5.19$ (each $\left.1 \mathrm{H}, \mathrm{d}, J=19 \mathrm{~Hz}, 13^{2}-\mathrm{H}_{2}\right), 4.60(1 \mathrm{H}, \mathrm{dq}, J=2,7 \mathrm{~Hz}, 18-\mathrm{H}), 4.37$ $(1 \mathrm{H}, \mathrm{dt}, J=9,2 \mathrm{~Hz}, 17-\mathrm{H}), 4.12,4.10$ (each $\left.1 \mathrm{H}, \mathrm{dt}, J=11,7 \mathrm{~Hz}, 17^{2}-\mathrm{CH}_{2}\right), 3.73(2 \mathrm{H}, \mathrm{q}, J=8 \mathrm{~Hz}$, $8-\mathrm{CH}_{2}$), 3.79, 3.73, 3.33 (each 3H, s, 2-, 7-, 12- CH_{3}), 2.45-2.40, 2.15-2.08, 1.95-1.88, 1.68-1.61 (each $\left.1 \mathrm{H}, \mathrm{m}, 17-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.01\left(3 \mathrm{H}, \mathrm{s}, 17^{3}-\mathrm{OCOCH}_{3}\right), 1.87\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, 18-\mathrm{CH}_{3}\right), 1.72(3 \mathrm{H}, \mathrm{t}$, $J=8 \mathrm{~Hz}, 8^{1}-\mathrm{CH}_{3}$), $-0.10,-2.03$ (each $1 \mathrm{H}, \mathrm{s}, \mathrm{NH} \times 2$); MS (ESI) found: $m / z 565$. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{MH}^{+}, 565$.

Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is © The Royal Society of Chemistry and Owner Societies 2008
17^{2}-Decarboxy- $\mathbf{1 7}^{2}$-dodecanoyloxymethyl-pyropheophorbide- \boldsymbol{d} ($\mathbf{9 b}$). Similarly to synthesis of 9a, esterification of $\mathbf{8}(100.0 \mathrm{mg}, 191 \mu \mathrm{~mol})$ with dodecanoic acid (lauric acid, $153.1 \mathrm{mg}, 764 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{ml})$ of EDC $\cdot \mathrm{HCl}(219.7 \mathrm{mg}, 1146 \mu \mathrm{~mol})$ and DMAP $(93.3 \mathrm{mg}, 764 \mu \mathrm{~mol})$ for 23 h gave 9b ($105.0 \mathrm{mg}, 78 \%$) as a black solid after $\mathrm{FCC}\left(6 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol): mp 156-158 ${ }^{\circ} \mathrm{C}$; VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }=695$ (rel, 0.82), 633 (0.09), $555(0.16)$, 522 (0.15), 429 (1.00), $387 \mathrm{~nm}(0.84) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=11.56(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{CHO}), 10.33,9.63$, 8.85 (each $1 \mathrm{H}, \mathrm{s}, 5-, 10-, 20-\mathrm{H}), 5.29,5.19$ (each $1 \mathrm{H}, \mathrm{d}, J=19 \mathrm{~Hz}, 13^{2}-\mathrm{H}_{2}$), $4.60(1 \mathrm{H}, \mathrm{dq}, J=2,8$ $\mathrm{Hz}, 18-\mathrm{H}), 4.37(1 \mathrm{H}, \mathrm{dt}, J=9,2 \mathrm{~Hz}, 17-\mathrm{H}), 4.12\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, 17^{2}-\mathrm{CH}_{2}\right), 3.74(2 \mathrm{H}, \mathrm{q}, J=8 \mathrm{~Hz}$, $8-\mathrm{CH}_{2}$), 3.79, 3.73, 3.33 (each 3H, s, 2-, 7-, 12- CH_{3}), 2.45-2.39, 2.14-2.08, 1.95-1.87, 1.69-1.63 (each $1 \mathrm{H}, \mathrm{m}, 17-\mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.26, 2.23 (each $\left.1 \mathrm{H}, \mathrm{dt}, J=15,8 \mathrm{~Hz}, 17^{3}-\mathrm{OCOCH}_{2}\right), 1.87(3 \mathrm{H}, \mathrm{d}, J=8$ $\left.\mathrm{Hz}, 18-\mathrm{CH}_{3}\right), 1.73\left(3 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, 8^{1}-\mathrm{CH}_{3}\right), 1.25-1.15\left(18 \mathrm{H}, \mathrm{m}, 17^{3}-\mathrm{OCOC}\left(\mathrm{CH}_{2}\right)_{9}\right), 0.84(3 \mathrm{H}, \mathrm{t}, J=$ $7 \mathrm{~Hz}, 17^{3}-\mathrm{OCOC}_{10} \mathrm{CH}_{3}$), $-0.09,-2.03$ (each $1 \mathrm{H}, \mathrm{s}, \mathrm{NH} \times 2$); MS (ESI) found: $m / z 705$. Calcd. for $\mathrm{C}_{44} \mathrm{H}_{57} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{MH}^{+}, 705$.
17^{2}-Decarboxy- 17^{2}-docosanoyloxymethyl-pyropheophorbide- \boldsymbol{d} (9c). Similarly to synthesis of 9a, esterification of $\mathbf{8}(90.0 \mathrm{mg}, 172 \mu \mathrm{~mol})$ with docosanoic acid (behenic acid, $239.0 \mathrm{mg}, 702$ $\mu \mathrm{mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{ml})$ of $\mathrm{EDC} \cdot \mathrm{HCl}(197.7 \mathrm{mg}, 1031 \mu \mathrm{~mol})$ and DMAP $(84.0 \mathrm{mg}, 688 \mu \mathrm{~mol})$ for 21 h gave $9 \mathrm{c}(114.5 \mathrm{mg}, 79 \%)$ as a black solid after $\mathrm{FCC}\left(5 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol): mp 153-155 ${ }^{\circ} \mathrm{C}$; VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }=694$ (rel, 0.82), 633 (0.10), 554 (0.17), 522 (0.16), 429 (1.00), $387 \mathrm{~nm}(0.85) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=11.55(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{CHO}), 10.30,9.60$, 8.85 (each $1 \mathrm{H}, \mathrm{s}, 5-, 10-, 20-\mathrm{H}), 5.29,5.18$ (each $\left.1 \mathrm{H}, \mathrm{d}, J=19 \mathrm{~Hz}, 13^{2}-\mathrm{H}_{2}\right), 4.60(1 \mathrm{H}, \mathrm{dq}, J=2,7$ $\mathrm{Hz}, 18-\mathrm{H}), 4.37(1 \mathrm{H}, \mathrm{dt}, J=9,3 \mathrm{~Hz}, 17-\mathrm{H}), 4.12\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, 17^{2}-\mathrm{CH}_{2}\right), 3.73(2 \mathrm{H}, \mathrm{q}, J=8 \mathrm{~Hz}$, $8-\mathrm{CH}_{2}$), 3.78, 3.72, 3.32 (each 3H, s, 2-, 7-, 12- CH_{3}), 2.44-2.40, 2.14-2.08, 1.95-1.89, 1.69-1.63 (each $\left.1 \mathrm{H}, \mathrm{m}, 17-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.25\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, 17^{3}-\mathrm{OCOCH}_{2}\right), 1.87\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, 18-\mathrm{CH}_{3}\right)$, $1.72\left(3 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, 8^{1}-\mathrm{CH}_{3}\right), 1.30-1.15\left(38 \mathrm{H}, \mathrm{m}, 17^{3}-\mathrm{OCOC}\left(\mathrm{CH}_{2}\right)_{19}\right), 0.87(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}$, $17^{3}-\mathrm{OCOC}_{20} \mathrm{CH}_{3}$), $-0.12,-2.04$ (each $1 \mathrm{H}, \mathrm{s}, \mathrm{NH} \times 2$); MS (ESI) found: $m / z 845$. Calcd. for $\mathrm{C}_{54} \mathrm{H}_{77} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{MH}^{+}, 845$.

Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is © The Royal Society of Chemistry and Owner Societies 2008

17^{2}-Decarboxy- $\mathbf{1 7}^{2}$-pivaloyloxymethyl-pyropheophorbide-d (9d). Similarly to synthesis of 9a, esterification of $\mathbf{8}(102.0 \mathrm{mg}, 195 \mu \mathrm{~mol})$ with 2,2-dimethylpropanoic acid (pivalic acid, 99.0 mg , $969 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{ml})$ of $\mathrm{EDC} \cdot \mathrm{HCl}(332.0 \mathrm{mg}, 1732 \mu \mathrm{~mol})$ and DMAP $(156.7 \mathrm{mg}, 1282$ $\mu \mathrm{mol})$ for 62 h to give $\mathbf{9 d}(37.5 \mathrm{mg}, 32 \%)$ as a black solid after $\mathrm{FCC}\left(5 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $)$: $\mathrm{mp} 253-257^{\circ} \mathrm{C}$; VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}=695$ (rel, 0.81), $633(0.10)$, 554 (0.17), 522 (0.16), 429 (1.00), $387 \mathrm{~nm}(0.85) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=11.57(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{CHO})$, 10.34, 9.64, 8.86 (each $1 \mathrm{H}, \mathrm{s}, 5-, 10-, 20-\mathrm{H}$), $5.27,5.29$ (each $1 \mathrm{H}, \mathrm{d}, J=19 \mathrm{~Hz}, 13^{2}-\mathrm{H}_{2}$), $4.60(1 \mathrm{H}$, $\mathrm{dq}, J=2,7 \mathrm{~Hz}, 18-\mathrm{H}), 4.38(1 \mathrm{H}, \mathrm{dt}, J=9,3 \mathrm{~Hz}, 17-\mathrm{H}), 4.10\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, 17^{2}-\mathrm{CH}_{2}\right), 3.75(2 \mathrm{H}, \mathrm{q}$, $J=8 \mathrm{~Hz}, 8-\mathrm{CH}_{2}$), 3.79, 3.74, 3.34 (each 3H, s, 2-, 7-, $12-\mathrm{CH}_{3}$), 2.45-2.40, 2.15-2.09, 1.95-1.89, 1.69-1.61 (each $\left.1 \mathrm{H}, \mathrm{m}, 17-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.87\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, 18-\mathrm{CH}_{3}\right), 1.73\left(3 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, 8^{1}-\mathrm{CH}_{3}\right)$, $1.15\left(9 \mathrm{H}, \mathrm{s}, 17^{3}-\mathrm{OCOC}\left(\mathrm{CH}_{3}\right)_{3}\right),-0.08,-2.01$ (each $1 \mathrm{H}, \mathrm{s}, \mathrm{NH} \times 2$); MS (ESI) found: $m / z 607$. Calcd. for $\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{MH}^{+}, 607$.

To a dry THF (2 ml) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution $(20 \mathrm{ml})$ of $\mathbf{8}(100.0 \mathrm{mg}, 191 \mu \mathrm{~mol})$ with stirring, a dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (20 ml) of pivaloyl chloride ($1854 \mathrm{mg}, 15.4 \mathrm{mmol}$) and triethylamine (956.0 $\mathrm{mg}, 9.45 \mathrm{mmol}$) at room temperature under N_{2}. After heating at $45^{\circ} \mathrm{C}$ for 4 h , the reaction mixture was treated with the similar work-up as mentioned above to give $\mathbf{9 d}(84.5 \mathrm{mg}, 72 \%)$.
17^{2}-Benzoyloxymethyl-17 ${ }^{2}$-decarboxy-pyropheophorbide- $\boldsymbol{d}(\mathbf{9 e})$. Similarly to synthesis of $\mathbf{9 a}$, esterification of $\mathbf{8}(69.0 \mathrm{mg}, 132 \mu \mathrm{~mol})$ with benzoic acid ($71.4 \mathrm{mg}, 855 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{ml})$ of EDC $\cdot \mathrm{HCl}(185.5 \mathrm{mg}, 968 \mu \mathrm{~mol})$ and DMAP $(68.5 \mathrm{mg}, 561 \mu \mathrm{~mol})$ gave $9 \mathrm{e}(45.5 \mathrm{mg}, 55 \%)$ as a black solid after FCC ($4-5 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $)$: mp $95-99{ }^{\circ} \mathrm{C}$; VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }=694(\mathrm{rel}, 0.80), 633(0.10), 554$ (0.17), 522 (0.16), 429 (1.00), $387 \mathrm{~nm}(0.85)$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=11.55(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{CHO}), 10.31,9.61,8.86$ (each $\left.1 \mathrm{H}, \mathrm{s}, 5-, 10-, 20-\mathrm{H}\right), 7.96$, $7.95(2 \mathrm{H}, \mathrm{dd}, J=1,8 \mathrm{~Hz}, 2-, 6-\mathrm{H}$ of Ph$), 7.53(1 \mathrm{H}, \mathrm{tt}, J=1,7 \mathrm{~Hz}, 4-\mathrm{H}$ of Ph$), 7.39(2 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}$, $3-, 5-\mathrm{H}$ of Ph), $5.30,5.20$ (each $1 \mathrm{H}, \mathrm{d}, J=19 \mathrm{~Hz}, 13^{2}-\mathrm{H}_{2}$), $4.64(1 \mathrm{H}, \mathrm{dq}, J=2,7 \mathrm{~Hz}, 18-\mathrm{H}), 4.42$ $(1 \mathrm{H}, \mathrm{dt}, J=9,3 \mathrm{~Hz}, 17-\mathrm{H}), 4.36\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, 17^{2}-\mathrm{CH}_{2}\right), 3.73\left(2 \mathrm{H}, \mathrm{q}, J=8 \mathrm{~Hz}, 8-\mathrm{CH}_{2}\right), 3.78$,
3.72, 3.32 (each $3 \mathrm{H}, \mathrm{s}, 2-, 7-, 12-\mathrm{CH}_{3}$), 2.55-2.49, 2.26-2.19, 2.08-1.99, 1.78-1.74 (each $1 \mathrm{H}, \mathrm{m}$, $\left.17-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.88\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, 18-\mathrm{CH}_{3}\right), 1.72\left(3 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, 8^{1}-\mathrm{CH}_{3}\right),-0.11,-2.04$ (each 1 H , $\mathrm{s}, \mathrm{NH} \times 2$); MS (ESI) found: $m / z 627$. Calcd. for $\mathrm{C}_{39} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{MH}^{+}, 627$.

Ethyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (6a). Borane t-butylamine complex $\left(t \mathrm{BuNH}_{2} \cdot \mathrm{BH}_{3}, 13.3 \mathrm{mg}, 153 \mu \mathrm{~mol}\right)$ was added to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution $(10 \mathrm{ml})$ of $\mathbf{5 a}(57.8 \mathrm{mg}, 102$ $\mu \mathrm{mol})$ at room temperature. After stirring for 2 h , the reaction mixture was washed with aq. 2% HCl , aq. $4 \% \mathrm{NaHCO}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The residue was purified by FCC $\left(20-24 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $)$ to give $\mathbf{6 a}$ (51.2 mg , 88%) as a black green solid: $\mathrm{mp} 227-232{ }^{\circ} \mathrm{C}$; VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }=662($ rel., 0.48$), 606(0.08), 535$ (0.09), $504(0.10), 410 \mathrm{~nm}(1.00) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=9.47,9.43,8.55$ (each $\left.1 \mathrm{H}, \mathrm{s}, 5-, 10-, 20-\mathrm{H}\right)$, $5.90\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}\right), 5.22,5.08$ (each $\left.1 \mathrm{H}, \mathrm{d}, J=19 \mathrm{~Hz}, 13^{2}-\mathrm{H}_{2}\right), 4.47(1 \mathrm{H}, \mathrm{dq}, J=2,7 \mathrm{~Hz}, 18-\mathrm{H})$, $4.26(1 \mathrm{H}, \mathrm{dt}, J=9,2 \mathrm{~Hz}, 17-\mathrm{H}), 4.14-4.04\left(2 \mathrm{H}, \mathrm{m}, 17^{2}-\mathrm{COOCH}_{2}\right), 3.68\left(2 \mathrm{H}, \mathrm{q}, J=8 \mathrm{~Hz}, 8-\mathrm{CH}_{2}\right)$, 3.64, 3.42, 3.26 (each 3H, s, 2-, 7-, 12-CH3), 2.69-2.64, 2.56-2.51, 2.28-2.22 ($1 \mathrm{H}+1 \mathrm{H}+2 \mathrm{H}, \mathrm{m}$, $\left.17-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.79\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, 18-\mathrm{CH}_{3}\right), 1.69\left(3 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, 8^{1}-\mathrm{CH}_{3}\right), 1.17(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}$, $17^{2}-\mathrm{COOCCH}_{3}$), $0.25,-1.82$ (each $1 \mathrm{H}, \mathrm{s}, \mathrm{NH} \times 2$); MS (ESI) found: $m / z 567$. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{MH}^{+}, 567$.

Dodecyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (6b). Similarly to synthesis of 6a, reduction of $\mathbf{5 b}(51.0 \mathrm{mg}, 72 \mu \mathrm{~mol})$ by $t \mathrm{BuNH}_{2} \cdot \mathrm{BH}_{3}(9.4 \mathrm{mg}, 108 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ gave $\mathbf{6 b}$ $(37.7 \mathrm{mg}, 74 \%)$ as a black solid after $\mathrm{FCC}\left(6-10 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $): \mathrm{mp} 118-121^{\circ} \mathrm{C}$; VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }=662$ (rel., 0.49$), 605(0.08), 535(0.09), 504$ (0.10), $410 \mathrm{~nm}(1.00)$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=9.48,9.44,8.56$ (each $\left.1 \mathrm{H}, \mathrm{s}, 5-, 10-, 20-\mathrm{H}\right), 5.91(2 \mathrm{H}$, s, $3-\mathrm{CH}_{2}$), $5.24,5.09\left(\right.$ each $\left.1 \mathrm{H}, \mathrm{d}, J=19 \mathrm{~Hz}, 13^{2}-\mathrm{H}_{2}\right), 4.48(1 \mathrm{H}, \mathrm{dq}, J=2,8 \mathrm{~Hz}, 18-\mathrm{H}), 4.28(1 \mathrm{H}, \mathrm{dt}$, $J=9,2 \mathrm{~Hz}, 17-\mathrm{H}), 4.02-3.92\left(2 \mathrm{H}, \mathrm{m}, 17^{2}-\mathrm{COOCH}_{2}\right), 3.69\left(2 \mathrm{H}, \mathrm{q}, J=8 \mathrm{~Hz}, 8-\mathrm{CH}_{2}\right), 3.65,3.42$, 3.26 (each $3 \mathrm{H}, \mathrm{s}, 2-, 7-, 12-\mathrm{CH}_{3}$), 2.70-2.64, 2.56-2.51, 2.31-2.23 ($1 \mathrm{H}+1 \mathrm{H}+2 \mathrm{H}, \mathrm{m}, 17-\mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.80\left(3 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, 18-\mathrm{CH}_{3}\right), 1.69\left(3 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, 8^{1}-\mathrm{CH}_{3}\right), 1.26-1.18(20 \mathrm{H}, \mathrm{m}$,
$\left.17^{2}-\mathrm{COOCC}_{10} \mathrm{H}_{20}\right), 0.84\left(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, 17^{2}-\mathrm{COOC}_{11} \mathrm{CH}_{3}\right), 0.27,-1.81$ (each $1 \mathrm{H}, \mathrm{s}, \mathrm{NH} \times 2$); MS (ESI) found: m / z 707. Calcd. for $\mathrm{C}_{44} \mathrm{H}_{59} \mathrm{~N}_{4} \mathrm{O}_{4}$: $\mathrm{MH}^{+}, 707$.

Docosyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (6c). Similarly to synthesis of 6a, reduction of $\mathbf{5 c}(85.3 \mathrm{mg}, 101 \mu \mathrm{~mol})$ by $t \mathrm{BuNH}_{2} \cdot \mathrm{BH}_{3}(13.2 \mathrm{mg}, 152 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ gave $\mathbf{6 c}(66.2 \mathrm{mg}, 77 \%)$ as a dark green solid after $\mathrm{FCC}\left(4-6 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol): mp 130-132 ${ }^{\circ} \mathrm{C}$; VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }=662$ (rel., 0.49$), 605(0.09), 536(0.10)$, 505 (0.10), $410 \mathrm{~nm}(1.00) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=9.49,9.44,8.56$ (each $1 \mathrm{H}, \mathrm{s}, 5-, 10-, 20-\mathrm{H}$), 5.91 $\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}\right), 5.24,5.09$ (each $\left.1 \mathrm{H}, \mathrm{d}, J=19 \mathrm{~Hz}, 13^{2}-\mathrm{H}_{2}\right), 4.49(1 \mathrm{H}, \mathrm{dq}, J=2,7 \mathrm{~Hz}, 18-\mathrm{H}), 4.28$ $(1 \mathrm{H}, \mathrm{br}-\mathrm{d}, J=9 \mathrm{~Hz}, 17-\mathrm{H}), 4.02-3.92\left(2 \mathrm{H}, \mathrm{m}, 17^{2}-\mathrm{COOCH}_{2}\right), 3.69\left(2 \mathrm{H}, \mathrm{q}, J=8 \mathrm{~Hz}, 8-\mathrm{CH}_{2}\right), 3.65$, 3.42, 3.26 (each $\left.3 \mathrm{H}, \mathrm{s}, 2-, 7-, 12-\mathrm{CH}_{3}\right), 2.70-2.64,2.56-2.51,2.32-2.23(1 \mathrm{H}+1 \mathrm{H}+2 \mathrm{H}, \mathrm{m}$, $\left.17-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.80\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, 18-\mathrm{CH}_{3}\right), 1.69\left(3 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, 8^{1}-\mathrm{CH}_{3}\right), 1.30-1.18(40 \mathrm{H}, \mathrm{m}$, $\left.17^{2}-\mathrm{COOCC}_{20} \mathrm{H}_{40}\right), 0.87\left(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, 17^{2}-\mathrm{COOC}_{21} \mathrm{CH}_{3}\right), 0.28,-1.80($ each $1 \mathrm{H}, \mathrm{s}, \mathrm{NH} \times 2)$; MS (ESI) found: $m / z 847$. Calcd. for $\mathrm{C}_{54} \mathrm{H}_{79} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{MH}^{+}, 847$.

Neopentyl 3-devinyl-3-hydroxymethyl-pyropheophorbide- \boldsymbol{a} (6d). Similarly to synthesis of 6a, reduction of $\mathbf{5 d}(46.3 \mathrm{mg}, 76 \mu \mathrm{~mol})$ by $t \mathrm{BuNH}_{2} \cdot \mathrm{BH}_{3}(10.0 \mathrm{mg}, 115 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ gave $\mathbf{6 d}(37.4 \mathrm{mg}, 81 \%)$ as a black solid after $\mathrm{FCC}\left(5-7 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $): \mathrm{mp} 205-207{ }^{\circ} \mathrm{C}$; VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }=662$ (rel., 0.49$), 605(0.08), 535(0.09), 504$ (0.10), $410 \mathrm{~nm}(1.00) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=9.50,9.45,8.57$ (each $\left.1 \mathrm{H}, \mathrm{s}, 5-, 10-, 20-\mathrm{H}\right), 5.91(2 \mathrm{H}$, s, $\left.3-\mathrm{CH}_{2}\right), 5.23,5.10\left(e a c h 1 \mathrm{H}, \mathrm{d}, J=20 \mathrm{~Hz}, 13^{2}-\mathrm{H}_{2}\right), 4.50(1 \mathrm{H}, \mathrm{dq}, J=2,7 \mathrm{~Hz}, 18-\mathrm{H}), 4.30(1 \mathrm{H}$, $\operatorname{br}-\mathrm{d}, J=8 \mathrm{~Hz}, 17-\mathrm{H}), 3.77,3.71$ (each $\left.1 \mathrm{H}, \mathrm{d}, J=11 \mathrm{~Hz}, 17^{2}-\mathrm{COOCH}_{2}\right), 3.70(2 \mathrm{H}, \mathrm{q}, J=8 \mathrm{~Hz}$, $\left.8-\mathrm{CH}_{2}\right), 3.66,3.43,3.26$ (each $\left.3 \mathrm{H}, \mathrm{s}, 2-, 7-, 12-\mathrm{CH}_{3}\right), 2.72-2.66,2.59-2.54,2.36-2.27(1 \mathrm{H}+1 \mathrm{H}+2 \mathrm{H}$, $\left.\mathrm{m}, 17-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.81\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, 18-\mathrm{CH}_{3}\right), 1.69\left(3 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, 8^{1}-\mathrm{CH}_{3}\right), 0.85(9 \mathrm{H}, \mathrm{s}$, $\left.17^{2}-\mathrm{COOCC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.28,-1.79$ (each $1 \mathrm{H}, \mathrm{s}, \mathrm{NH} \times 2$); MS (ESI) found: $m / z 609$. Calcd. for $\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{MH}^{+}, 609$.

Supplementary Material (ESI) for Photochemical \& Photobiological Sciences

 This journal is © The Royal Society of Chemistry and Owner Societies 2008Benzyl 3-devinyl-3-hydroxymethyl-pyropheophorbide- \boldsymbol{a} (6e). Similarly to synthesis of $\mathbf{6 a}$, reduction of $\mathbf{5 e}(72.6 \mathrm{mg}, 116 \mu \mathrm{~mol})$ by $t \mathrm{BuNH}_{2} \cdot \mathrm{BH}_{3}(15.1 \mathrm{mg}, 174 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ gave $\mathbf{6 e}(64.3 \mathrm{mg}, 88 \%)$ as a black green solid after FCC $\left(4-6 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $): \mathrm{mp} 206-210^{\circ} \mathrm{C}$; VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }=662$ (rel., 0.48$), 606(0.08), 535(0.09), 504$ (0.10), $410 \mathrm{~nm}(1.00) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=9.52,9.46,8.55$ (each $1 \mathrm{H}, \mathrm{s}, 5-, 10-, 20-\mathrm{H}$), 7.26-7.24 (3H, m, 3-, 4-, 5-H of Ph), 7.22-7.21 (2H, m, 2-, 6-H of Ph), 5.92 ($2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}$), 5.23, 5.06 (each $\left.1 \mathrm{H}, \mathrm{d}, J=19 \mathrm{~Hz}, 13^{2}-\mathrm{H}_{2}\right), 5.05,5.00\left(\right.$ each $\left.1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}, 17^{2}-\mathrm{COOCH}_{2}\right), 4.46(1 \mathrm{H}, \mathrm{dq}, J=2,7$ $\mathrm{Hz}, 18-\mathrm{H}), 4.28(1 \mathrm{H}, \mathrm{br}-\mathrm{d}, J=8 \mathrm{~Hz}, 17-\mathrm{H}), 3.70\left(2 \mathrm{H}, \mathrm{q}, J=8 \mathrm{~Hz}, 8-\mathrm{CH}_{2}\right), 3.67,3.42,3.27$ (each 3 H , s, 2-, $\left.7-, 12-\mathrm{CH}_{3}\right), 2.73-2.67,2.61-2.56,2.35-2.22\left(1 \mathrm{H}+1 \mathrm{H}+2 \mathrm{H}, \mathrm{m}, 17-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.77(3 \mathrm{H}, \mathrm{d}, J=7$ $\left.\mathrm{Hz}, 18-\mathrm{CH}_{3}\right), 1.70\left(3 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, 8^{1}-\mathrm{CH}_{3}\right), 0.31,-1.79($ each $1 \mathrm{H}, \mathrm{s}, \mathrm{NH} \times 2)$; MS (ESI) found: m / z 629. Calcd. for $\mathrm{C}_{39} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{MH}^{+}, 629$.

17^{2}-Acetoxymethyl-17 ${ }^{2}$-decarboxy-3-devinyl-3-hydroxymethyl-pyropheophorbide-a (10a).

Similarly to synthesis of $\mathbf{6 a}$, reduction of $\mathbf{9 a}(89.5 \mathrm{mg}, 159 \mu \mathrm{~mol})$ by $t \mathrm{BuNH}_{2} \cdot \mathrm{BH}_{3}(20.2 \mathrm{mg}, 232$ $\mu \mathrm{mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ gave 10a $(88.3 \mathrm{mg}, 98 \%)$ as a black solid after FCC $(15-23 \%$ $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $)$: $\mathrm{mp} 226-231{ }^{\circ} \mathrm{C}$; VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}=662$ (rel., $0.49), 605$ (0.09), 535 (0.11), 504 (0.12), $410 \mathrm{~nm}(1.00),{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=9.47,9.44,8.57$ (each $1 \mathrm{H}, \mathrm{s}, 5-, 10-, 20-\mathrm{H}$), $5.91\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}\right), 5.20,5.09$ (each $1 \mathrm{H}, \mathrm{d}, J=19 \mathrm{~Hz}, 13^{2}-\mathrm{H}_{2}$), 4.50 $(1 \mathrm{H}, \mathrm{dq}, J=2,8 \mathrm{~Hz}, 18-\mathrm{H}), 4.27(1 \mathrm{H}, \mathrm{dt}, J=9,3 \mathrm{~Hz}, 17-\mathrm{H}), 4.10\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, 17^{2}-\mathrm{CH}_{2}\right), 3.69$ ($2 \mathrm{H}, \mathrm{q}, J=8 \mathrm{~Hz}, 8-\mathrm{CH}_{2}$), 3.66, 3.43, 3.26 (each $3 \mathrm{H}, \mathrm{s}, 2-, 7-, 12-\mathrm{CH}_{3}$), 2.41-2.35, 2.12-2.04, 1.93-1.84, 1.67-1.60 (each $\left.1 \mathrm{H}, \mathrm{m}, 17-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.01\left(3 \mathrm{H}, \mathrm{s}, 17^{3}-\mathrm{OCOCH}_{3}\right), 1.82(3 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, $\left.18-\mathrm{CH}_{3}\right), 1.70\left(3 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, 8^{1}-\mathrm{CH}_{3}\right), 0.33,-1.76($ each $1 \mathrm{H}, \mathrm{s}, \mathrm{NH} \times 2)$; MS (ESI) found: $m / z 567$. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{4}$: $\mathrm{MH}^{+}, 567$.

17^{2}-Decarboxy-3-devinyl-17 ${ }^{2}$-dodecanoyloxymethyl-3-hydroxymethyl-pyropheophorbide-a

 (10b). Similarly to synthesis of $\mathbf{6 a}$, reduction of $\mathbf{9 b}(99.7 \mathrm{mg}, 141 \mu \mathrm{~mol})$ by $t \mathrm{BuNH}_{2} \cdot \mathrm{BH}_{3}(18.4$ $\mathrm{mg}, 212 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ gave $\mathbf{1 0 b}(84.5 \mathrm{mg}, 85 \%)$ as a black solid after FCC $(6-15 \%$$\left.\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol $)$: mp 118-120 ${ }^{\circ} \mathrm{C}$; VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}=662$ (rel., 0.48), 605 (0.09), 535 (0.10), 504 (0.11), $410 \mathrm{~nm}(1.00) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=9.54,9.46$, 8.58 (each $1 \mathrm{H}, \mathrm{s}, 5-, 10-, 20-\mathrm{H}), 5.93\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}\right), 5.22,5.10$ (each $1 \mathrm{H}, \mathrm{d}, J=19 \mathrm{~Hz}, 13^{2}-\mathrm{H}_{2}$), $4.51(1 \mathrm{H}, \mathrm{dq}, J=2,7 \mathrm{~Hz}, 18-\mathrm{H}), 4.29(1 \mathrm{H}, \mathrm{dt}, J=9,3 \mathrm{~Hz}, 17-\mathrm{H}), 4.10\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, 17^{2}-\mathrm{CH}_{2}\right)$, $3.71\left(2 \mathrm{H}, \mathrm{q}, J=8 \mathrm{~Hz}, 8-\mathrm{CH}_{2}\right), 3.69,3.43,3.27$ (each $3 \mathrm{H}, \mathrm{s}, 2-, 7-, 12-\mathrm{CH}_{3}$), 2.42-2.36, 2.12-2.06, 1.92-1.85, 1.68-1.61 (each $\left.1 \mathrm{H}, \mathrm{m}, 17-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.24\left(3 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, 17^{3}-\mathrm{OCOCH}_{2}\right), 1.83(3 \mathrm{H}, \mathrm{d}, J$ $\left.=7 \mathrm{~Hz}, 18-\mathrm{CH}_{3}\right), 1.70\left(3 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, 8^{1}-\mathrm{CH}_{3}\right), 1.24-1.17\left(18 \mathrm{H}, \mathrm{m}, 17^{3}-\mathrm{OCOC}\left(\mathrm{CH}_{2}\right)_{9}\right), 0.84(3 \mathrm{H}, \mathrm{t}$, $J=7 \mathrm{~Hz}, 17^{3}-\mathrm{OCOC}_{10} \mathrm{CH}_{3}$), $0.36,-1.74$ (each $1 \mathrm{H}, \mathrm{s}, \mathrm{NH} \times 2$); MS (ESI) found: $m / z 707$. Calcd. for $\mathrm{C}_{44} \mathrm{H}_{59} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{MH}^{+}, 707$.

17^{2}-Decarboxy-3-devinyl-17 ${ }^{2}$-docosanoyloxymethyl-3-hydroxymethyl-pyropheophorbide-a

 (10c). Similarly to synthesis of $\mathbf{6 a}$, reduction of $\mathbf{9 c}(101.0 \mathrm{mg}, 120 \mu \mathrm{~mol})$ by $t \mathrm{BuNH}_{2} \cdot \mathrm{BH}_{3}(17.0$ $\mathrm{mg}, 196 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ gave $\mathbf{1 0 c}(94.3 \mathrm{mg}, 93 \%)$ as a black solid after FCC $(8-15 \%$ $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol $)$: mp 130-131 ${ }^{\circ} \mathrm{C}$; VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}=662$ (rel., 0.49), 605 (0.09), 535 (0.11), 504 (0.11), $410 \mathrm{~nm}(1.00) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=9.51,9.44$, 8.57 (each $1 \mathrm{H}, \mathrm{s}, 5-, 10-, 20-\mathrm{H}), 5.91\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}\right), 5.21,5.09$ (each $1 \mathrm{H}, \mathrm{d}, J=19 \mathrm{~Hz}, 13^{2}-\mathrm{H}_{2}$), $4.51(1 \mathrm{H}, \mathrm{dq}, J=2,7 \mathrm{~Hz}, 18-\mathrm{H}), 4.27(1 \mathrm{H}, \mathrm{dt}, J=9,2 \mathrm{~Hz}, 17-\mathrm{H}), 4.10\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, 17^{2}-\mathrm{CH}_{2}\right)$, $3.70\left(2 \mathrm{H}, \mathrm{q}, J=8 \mathrm{~Hz}, 8-\mathrm{CH}_{2}\right), 3.68,3.43,3.26$ (each $3 \mathrm{H}, \mathrm{s}, 2-, 7-, 12-\mathrm{CH}_{3}$), 2.41-2.35, 2.11-2.04, 1.92-1.85, 1.66-1.61 (each $\left.1 \mathrm{H}, \mathrm{m}, 17-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.25\left(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, 17^{3}-\mathrm{OCOCH}_{2}\right), 1.82(3 \mathrm{H}, \mathrm{d}, J$ $\left.=7 \mathrm{~Hz}, 18-\mathrm{CH}_{3}\right), 1.70\left(3 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, 8^{1}-\mathrm{CH}_{3}\right), 1.30-1.17\left(38 \mathrm{H}, \mathrm{m}, 17^{3}-\mathrm{OCOC}\left(\mathrm{CH}_{2}\right)_{19}\right), 0.87(3 \mathrm{H}$, $\mathrm{t}, J=7 \mathrm{~Hz}, 17^{3}-\mathrm{OCOC}_{20} \mathrm{CH}_{3}$), 0.07, $-1.76($ each $1 \mathrm{H}, \mathrm{s}, \mathrm{NH} \times 2$); MS (ESI) found: $m / z 847$. Calcd. for $\mathrm{C}_{54} \mathrm{H}_{79} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{MH}^{+}, 847$.
17^{2}-Decarboxy-3-devinyl-3-hydroxymethyl-17 ${ }^{2}$-pivaloyloxymethyl-pyropheophorbide-a (10d).

 Similarly to synthesis of $\mathbf{6 a}$, reduction of $\mathbf{9 d}(109.0 \mathrm{mg}, 180 \mu \mathrm{~mol})$ by $t \mathrm{BuNH}_{2} \cdot \mathrm{BH}_{3}(26.7 \mathrm{mg}, 307$ $\mu \mathrm{mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ gave $\mathbf{1 0 d}(97.1 \mathrm{mg}, 89 \%)$ as a black solid after FCC ($6-10 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane): $\mathrm{mp} 238-241{ }^{\circ} \mathrm{C}$; VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}=662$ (rel., 0.49), 606(0.08), 535 (0.09), 505 (0.10), $410 \mathrm{~nm}(1.00) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=9.53,9.45,8.58$ (each $1 \mathrm{H}, \mathrm{s}, 5-$, $10-, 20-\mathrm{H}), 5.92\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}\right), 5.20,5.09\left(\right.$ each $\left.1 \mathrm{H}, \mathrm{d}, J=19 \mathrm{~Hz}, 13^{2}-\mathrm{H}_{2}\right), 4.51(1 \mathrm{H}, \mathrm{dq}, J=2,7$ $\mathrm{Hz}, 18-\mathrm{H}), 4.29(1 \mathrm{H}, \mathrm{dt}, J=9,2 \mathrm{~Hz}, 17-\mathrm{H}), 4.09\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, 17^{2}-\mathrm{CH}_{2}\right), 3.70(2 \mathrm{H}, \mathrm{q}, J=8 \mathrm{~Hz}$, $8-\mathrm{CH}_{2}$), 3.68, 3.43, 3.27 (each 3H, s, 2-, 7-, 12- CH_{3}), 2.44-2.36, 2.13-2.06, 1.91-1.85, 1.67-1.61 (each $\left.1 \mathrm{H}, \mathrm{m}, 17-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.83\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, 18-\mathrm{CH}_{3}\right), 1.70\left(3 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, 8^{1}-\mathrm{CH}_{3}\right), 1.15(9 \mathrm{H}$, s, $\left.17^{3}-\mathrm{OCOC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.35,-1.75$ (each $1 \mathrm{H}, \mathrm{s}, \mathrm{NH} \times 2$); MS (ESI) found: $m / z 609$. Calcd. for $\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{MH}^{+}, 609$.

17^{2}-Benzoyloxymethyl-17 ${ }^{2}$-decarboxy-3-devinyl-3-hydroxymethyl-pyropheophorbide-a (10e).

 Similarly to synthesis of $\mathbf{6 a}$, reduction of $\mathbf{9 e}(69.0 \mathrm{mg}, 110 \mu \mathrm{~mol})$ by $t \mathrm{BuNH}_{2} \cdot \mathrm{BH}_{3}(16.0 \mathrm{mg}, 184$ $\mu \mathrm{mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ gave $\mathbf{1 0 e}(64.7 \mathrm{mg}, 94 \%)$ as a black green solid after FCC ($8-10 \%$ $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane): mp 124-126 ${ }^{\circ} \mathrm{C}$; VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}=662$ (rel., $0.49), 606$ (0.09), 535 (0.10), $505(0.11), 410 \mathrm{~nm}(1.00) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=9.53,9.46,8.59$ (each 1H, s, 5-, 10-, 20-H), 7.97 (each $1 \mathrm{H}, \mathrm{dd}, J=1,8 \mathrm{~Hz}, 2-, 6-\mathrm{H}$ of Ph), $7.52(1 \mathrm{H}, \mathrm{tt}, J=1,7 \mathrm{~Hz}$, $4-\mathrm{H}$ of Ph$), 7.40(2 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, 3-, 5-\mathrm{H}$ of Ph$), 5.93\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}\right), 5.23,5.11$ (each $1 \mathrm{H}, \mathrm{d}, J=19$ $\left.\mathrm{Hz}, 13^{2}-\mathrm{H}_{2}\right), 4.55(1 \mathrm{H}, \mathrm{dq}, J=2,8 \mathrm{~Hz}, 18-\mathrm{H}), 4.36,4.34$ (each $\left.1 \mathrm{H}, \mathrm{dt}, J=11,6 \mathrm{~Hz}, 17^{2}-\mathrm{CH}_{2}\right), 4.34$ $(1 \mathrm{H}, \mathrm{dt}, J=9,3 \mathrm{~Hz}, 17-\mathrm{H}), 3.71\left(2 \mathrm{H}, \mathrm{q}, J=8 \mathrm{~Hz}, 8-\mathrm{CH}_{2}\right), 3.68,3.43,3.27$ (each $3 \mathrm{H}, \mathrm{s}, 2-, 7-$, $12-\mathrm{CH}_{3}$), 2.51-2.46, 2.23-2.17, 2.05-1.97, 1.77-1.73 (each $1 \mathrm{H}, \mathrm{m}, 17-\mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.84(3 \mathrm{H}, \mathrm{d}, J=8$ $\left.\mathrm{Hz}, 18-\mathrm{CH}_{3}\right), 1.70\left(3 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, 8^{1}-\mathrm{CH}_{3}\right), 0.35,-1.75($ each $1 \mathrm{H}, \mathrm{s}, \mathrm{NH} \times 2)$; MS (ESI) found: m / z 629. Calcd. for $\mathrm{C}_{39} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{MH}^{+}, 629$.Zinc ethyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (1a). A methanol solution (0.3 ml) saturated with $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ was added to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (5 ml) of $\mathbf{6 a}(5.3 \mathrm{mg}, 9.3 \mu \mathrm{~mol}$). After stirring for 2 h , the solution was washed with aq. $4 \% \mathrm{NaHCO}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The residue was purified by RP-HPLC (methanol) to give 1a [the retention (RT) time was 17.4 min] as a dark green solid: VIS (THF) $\lambda_{\max }=647$ (rel., 0.74), 600
(0.11), 566 (0.06), 521 (0.04), 424 (1.00) and $404 \mathrm{~nm}(0.55)$; MS (APCI) found: $m / z 629$. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{64} \mathrm{Zn}: \mathrm{MH}^{+}, 629$.

Zinc dodecyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (1b). Similarly to synthesis of $\mathbf{1 a}$, zinc-metallation of $\mathbf{6 b}(6.3 \mathrm{mg}, 8.9 \mu \mathrm{~mol})$ gave $\mathbf{1 b}$ as a dark green solid after NP-HPLC [methanol-THF-hexane $=2: 25: 175(\mathrm{v} / \mathrm{v}), \mathrm{RT}=18.1 \mathrm{~min}]:$ VIS (THF) $\lambda_{\max }=647$ (rel., 0.74), 601 (0.10), 563 (0.06), 518 (0.04), 424 (1.00) and 404 nm (0.55); MS (APCI) found: $m / z 769$. Calcd. for $\mathrm{C}_{44} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{64} \mathrm{Zn}: \mathrm{MH}^{+}, 769$.

Zinc docosyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (1c). Similarly to synthesis of 1a, zinc-metallation of $\mathbf{6 c}(5.5 \mathrm{mg}, 6.5 \mu \mathrm{~mol})$ gave $\mathbf{1 c}$ as a dark green solid after NP-HPLC [methanol-THF-hexane $=2: 25: 175(\mathrm{v} / \mathrm{v}), \mathrm{RT}=16.2 \mathrm{~min}]:$ VIS $(\mathrm{THF}) \lambda_{\max }=647($ rel., 0.72$), 601$ (0.11), 566 (0.06), 521 (0.04), 424 (1.00) and 404 nm (0.55); MS (APCI) found: $m / z 909$. Calcd. for $\mathrm{C}_{54} \mathrm{H}_{76} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{64} \mathrm{Zn}: \mathrm{MH}^{+}, 909$.

Zinc neopentyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (1d). Similarly to synthesis of $\mathbf{1 a}$, zinc-metallation of $\mathbf{6 d}(4.7 \mathrm{mg}, 7.7 \mu \mathrm{~mol})$ gave $\mathbf{1 d}$ as a dark green solid after RP-HPLC (methanol, RT = 19.6 min): VIS (THF) $\lambda_{\max }=647$ (rel., 0.74), $600(0.11), 566(0.06), 521(0.04)$, 424 (1.00) and $404 \mathrm{~nm}(0.56)$; MS (APCI) found: $m / z 671$. Calcd. for $\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{64} \mathrm{Zn}$: $\mathrm{MH}^{+}, 671$.

Zinc benzyl 3-devinyl-3-hydroxymethyl-pyropheophorbide- \boldsymbol{a} (1e). Similarly to synthesis of 1a, zinc-metallation of $\mathbf{6 e}(4.5 \mathrm{mg}, 7.2 \mu \mathrm{~mol})$ gave $\mathbf{1 e}$ as a dark green solid after RP-HPLC (methanol, $\mathrm{RT}=18.5 \mathrm{~min}):$ VIS (THF) $\lambda_{\text {max }}=647$ (rel., 0.75), 601 (0.11), 566 (0.06), 521 (0.04), 424 (1.00) and 404 nm (0.56); MS (APCI) found: $m / z 691$. Calcd. for $\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{64} \mathrm{Zn}$: $\mathrm{MH}^{+}, 691$.

Zinc 17^{2}-acetoxymethyl-17 ${ }^{2}$-decarboxy-3-devinyl-3-hydroxymethyl-pyropheophorbide-a (2a). Similarly to synthesis of $\mathbf{1 a}$, zinc-metallation of $\mathbf{1 0 a}(5.5 \mathrm{mg}, 9.7 \mu \mathrm{~mol})$ gave $\mathbf{2 a}$ as a dark green

Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is © The Royal Society of Chemistry and Owner Societies 2008
solid after RP-HPLC (methanol, RT = 18.0 min): VIS (THF) $\lambda_{\max }=647$ (rel., 0.75), $601(0.10), 565$ (0.06), 520 (0.04), 425 (1.00) and 405 nm (0.56); MS (APCI) found: $m / z 629$. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{64} \mathrm{Zn}: \mathrm{MH}^{+}, 629$.

Zinc 17^{2}-decarboxy-3-devinyl-17 ${ }^{2}$-dodecanoyloxymethyl-3-hydroxymethyl-

pyropheophorbide- \boldsymbol{a} (2b). Similarly to synthesis of 1a, zinc-metallation of $\mathbf{1 0 b}(6.2 \mathrm{mg}, 8.8$ $\mu \mathrm{mol}$) gave 2b as a dark green solid after RP-HPLC [pyridine-acetonitrile-ethyl acetate $=1: 50: 50$ $(\mathrm{v} / \mathrm{v}), \mathrm{RT}=15.3 \mathrm{~min}]:$ VIS (THF) $\lambda_{\max }=647$ (rel., 0.75), $601(0.10), 565(0.05), 522(0.03), 425$ (1.00) and $405 \mathrm{~nm}(0.55)$; MS (APCI) found: $m / z 769$. Calcd. for $\mathrm{C}_{44} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{64} \mathrm{Zn}^{2} \mathrm{MH}^{+}, 769$.

Zinc 17^{2}-decarboxy-3-devinyl-17 ${ }^{2}$-docosanoyloxymethyl-3-hydroxymethyl-

pyropheophorbide- \boldsymbol{a} (2c). Similarly to synthesis of 1a, zinc-metallation of $\mathbf{1 0 c}(5.8 \mathrm{mg}, 6.9$ $\mu \mathrm{mol}$) gave 2c as a dark green solid after RP-HPLC [pyridine-acetonitrile-ethyl acetate $=1: 50: 50$ $(\mathrm{v} / \mathrm{v}), \mathrm{RT}=23.2 \mathrm{~min}]:$ VIS (THF) $\lambda_{\max }=647$ (rel., 0.73), $601(0.10), 565(0.05), 521(0.03), 425$ (1.00) and 404 nm (0.55); MS (APCI) found: m / z 909. Calcd. for $\mathrm{C}_{54} \mathrm{H}_{76} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{64} \mathrm{Zn}^{2} \mathrm{MH}^{+}, 909$.

Zinc 17^{2}-decarboxy-3-devinyl-3-hydroxymethyl-17 ${ }^{2}$-pivaloyloxymethyl-pyropheophorbide-a

(2d). Similarly to synthesis of 1a, zinc-metallation of $\mathbf{1 0 d}(6.3 \mathrm{mg}, 10.4 \mu \mathrm{~mol})$ gave $\mathbf{2 d}$ as a dark green solid after RP-HPLC (methanol, RT $=21.2 \mathrm{~min}$): VIS (THF) $\lambda_{\max }=647$ (rel., 0.75), 601 (0.10), 565 (0.06), 523 (0.04), 425 (1.00) and 405 nm (0.56); MS (APCI) found: $m / z 671$. Calcd. for $\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{64} \mathrm{Zn}: \mathrm{MH}^{+}, 671$.

Zinc 17^{2}-benzoyloxymethyl-17 ${ }^{2}$-decarboxy-3-devinyl-3-hydroxymethyl-pyropheophorbide-a

(2e). Similarly to synthesis of $\mathbf{1 a}$, zinc-metallation of $\mathbf{1 0 e}(5.8 \mathrm{mg}, 9.2 \mu \mathrm{~mol})$ gave $\mathbf{2 e}$ as a dark green solid after RP-HPLC (methanol, RT $=22.6 \mathrm{~min}$): VIS (THF) $\lambda_{\max }=647$ (rel., 0.74), 602 (0.10), 564 (0.06), 521 (0.04), 425 (1.00) and 405 nm (0.58); MS (APCI) found: $m / z 691$. Calcd. for $\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{64} \mathrm{Zn}: \mathrm{MH}^{+}, 691$.

