Supporting Information

Consequences of Controlling Free Space Within a Reaction Cavity With a Remote Alkyl Tether: Photochemistry of *para*-Alkyl Dibenzyl Ketones Within an Organic Capsule in Water

Arun Kumar Sundaresan and V. Ramamurthy* Department of Chemistry University of Miami Coral Gables, FL 33124 U. S. A.

Table of Contents

Page No.

1.	General Methods	S 3
2.	¹ H NMR spectra of 1c, $1c@OA_2$ and NOESY NMR spectrum of	S 4
	1c@OA ₂ .	
3.	¹ H NMR spectra of 1d, $1d@OA_2$ and NOESY NMR spectrum of	S 7
	1d@OA ₂ .	
4.	¹ H NMR spectra of 1e, $1e@OA_2$ and NOESY NMR spectrum of	S 10
	1e@OA ₂ .	
5.	¹ H NMR spectra of 1f , 1f @OA ₂ , NOESY and COSY NMR spectra	S 13
	of $1f@OA_2$.	
6.	¹ H NMR spectra of photoproducts of 1c and 1f .	S 17

General methods:

Host octa acid was synthesized using reported procedures.¹ Guests **1c-f** were synthesized as reported in literature.² Complex of octa acid and the guest were prepared using the following procedure. A stock solution of the guest was prepared in DMSO- d_6 . To octa acid – sodium tetraborate solution in D₂O, guest solution was added such that the ratio of host to guest was 2 : 1. NMR spectra of the complex prepared were recorded and are presented in Figures SI 1 – SI 13. All NMR spectra were recorded using Bruker Avance Spectrometers at 298 K, unless mentioned otherwise. NOESY spectra were recorded with 0.5 s mixing time.

References:

- (1) Gibb, C. L. D.; Gibb, B. C. J. Am. Chem. Soc. 2004, 126, 11408-11409.
- (2) Sundaresan, A. K.; Ramamurthy, V. Org. Lett. 2007, 9, 3575-3578.

¹H NMR of **1c**, ¹H NMR and NOESY NMR spectra of **1c**@OA₂ complex.

Figure SI 1: ¹H NMR spectrum (300 MHz, CDCl₃) of 1c.

Figure SI 2: ¹H NMR spectrum (500 MHz, D₂O, 5×10^{-3} M OA, 5×10^{-2} M sodium tetraborate) of **1c@OA**₂. Aromatic signals of the guest are indicated with *. Residual water signal is denoted by ' \bullet '.

Figure SI 3: NOESY spectrum (500 MHz, D₂O, 5×10^{-3} M OA in 5×10^{-2} M sodium tetraborate) of **2.3@OA**₂.

¹H NMR of **1d**, ¹H NMR and NOESY NMR spectra of **1d**@OA₂ complex.

Figure SI 4: ¹H NMR spectrum (400 MHz, CDCl₃) of 1d.

Figure SI 5: ¹H NMR spectrum (500 MHz, D₂O, 5×10^{-3} M OA, 5×10^{-2} M sodium tetraborate) of 1d@OA₂. Aromatic signals of the guest are indicated with *. Residual water signal is denoted by ' \bullet '.

Figure SI 6: NOESY spectrum (500 MHz, D₂O, 5×10^{-3} M OA in 5×10^{-2} M sodium tetraborate) of 1d@OA₂.

Figure SI 7: ¹H NMR spectrum (300 MHz, CDCl₃) of 1e.

Figure SI 8: ¹H NMR spectrum (500 MHz, D₂O, 5×10^{-3} M OA, 5×10^{-2} M sodium tetraborate) of **1e@OA**₂. Aromatic signals of the guest are indicated with *. Residual water signal is denoted by ' \bullet '.

Figure SI 9: NOESY spectrum (500 MHz, D₂O, 5×10^{-3} M OA in 5×10^{-2} M sodium tetraborate) of 1e@OA₂.

Figure SI 10: ¹H NMR (400 MHz, CDCl₃) spectrum of 1f.

Figure SI 11: ¹H NMR spectrum (500 MHz, D₂O, 5×10^{-3} M OA, 5×10^{-3} M sodium tetraborate) of **2.6@OA₂**. Aromatic signal of the guest is denoted by *. Residual water signal is denoted by ' \bullet '.

Figure SI 12: NOESY spectrum (500 MHz, D₂O, 5×10^{-3} M OA in 5×10^{-2} M sodium tetraborate) of 1f@OA₂.

Figure SI 13: Partial COSY spectrum (300 MHz, D₂O, 5×10^{-3} M OA in 5×10^{-2} M sodium tetraborate) of **1f@OA₂** showing the interactions between the aliphatic methylene and methyl signals of **1f**. Sequential correlations between 3 and 4, 4 and 5, 5 and 6 and 6 and 7 can be seen in the COSY NMR spectrum.

¹H NMR spectra of octa acid complexes of photoproducts.

Figure SI 14: ¹H NMR spectra (300 MHz, D_2O) of $1c@OA_2$ (bottom) and $3c@OA_2$ (top).

Figure SI 16: ¹H NMR spectra (300 MHz, D_2O) of $1c@OA_2$ (bottom) and $7c@OA_2$ (top).

Figure SI 17: ¹H NMR spectra (300 MHz, D_2O) of $1f@OA_2$ (bottom) and $3f@OA_2$ (top).