Electronic Supplementary Information

Photooxidation of alcohols by a porphyrin/quinone/TEMPO system

Takayuki Nagasawa,^{a,b} Suleyman I. Allakhverdiev,^{a,c} Yoshifumi Kimura^d and Toshi Nagata^{*a,b}

^a Research Center for Molecular Scale Nanoscience, Institute for Molecular Science (IMS),
5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.

^b Department of Structural Molecular Science, The Graduate University for Advanced Studies, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.

^c Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.

^d Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan.

E-mail: toshi-n@ims.ac.jp, FAX: +81-564-59-5531

Table of Contents.

Figure S1. Raw experimental data for the transient absorption measurements and Stern-Volmer plots for the determination of the rates of electron transfer.

Figure S2. The initial rates of formation of PhCHO plotted versus the concentration of added 4-nitrobenzaldehyde.

Table S1. The TD-DFT results for the triplet states of the free base porphyrins.

Figure S1. Raw experimental data for the transient absorption measurements and Stern-Volmer plots for the determination of the rates of electron transfer.

(a) Compound **1a**.

Figure S1. (Continued)

(b) Compound 1b.

Figure S1. (Continued)

(c) Compound 2a.

Figure S2. The initial rates of formation of PhCHO plotted versus the concentration of added 4-nitrobenzaldehyde. The reaction conditions are the same as the "standard" conditions except for the added 4-nitrobenzaldehyde. The point with a circle indicates the "standard" conditions.

Compound	Calculated (eV) ¹	Experimental (eV)
H_2TPP^2	1.41	1.45 ³
2a	1.41	
2b	1.40	
2d	1.41	
2e	1.40	
2f	1.46	

Table S1. The $S_0 \rightarrow T_1$ excitation energies for free base porphyrins calculated by the TD-DFT methods.

¹ Vertical excitation energies calculated by TD-DFT/B3LYP/6-31G* with C-PCM model (epsilon = 13.26, no dispersion, no cavitation).

² 5,10,15,20-Tetraphenylporphine.

³ Taken from ref. 23 in the main text.