Conjugated Fluorene-Thiophenes Prepared From Azomethines

Connections-I: The Effect of Electronic and Aryl Groups on the

Spectroscopic and Electrochemical Properties

Stéphane Dufresne, Sergio Andrés Pérez Guarìn, Andréanne Bolduc, Alex N. Bourque, and W. G. Skene*

Centre for Self-Assembled Chemical Structures, Department of Chemistry, Department of

Chemistry University of Montreal, Pavillon J.A. Bombardier, C.P. 6128,

succ. Centre-ville, Montreal, QC, H3C 3J7, Canada Fax (514) 340-5290; Tel (514) 340-

5174; E-mail: w.skene@umontreal.ca

Table of contents

Figure 1. ¹ H spectrum of 1 (400 MHz, Acetone-d ₆)	.4
Figure 2. ¹³ C spectrum of 1 (80 MHz, DMSO-d ₆).	.5
Figure 3. ¹ H spectrum of 2 (400 MHz, DMSO-d ₆).	.6
Figure 4. ¹³ C spectrum of 2 (80 MHz, Acetone-d ₆)	.7
Figure 5. ¹ H spectrum of 3 (400 MHz, Acetone-d ₆).	.8
Figure 6. ¹³ C spectrum of 3 (80 MHz, DMSO-d ₆)	.9
Figure 7. ¹ H spectrum of 4 (400 MHz, Acetone- d_6)	0
Figure 8. ¹ H spectrum of 5 (400 MHz, Acetone-d ₆)1	1
Figure 9. ${}^{13}C$ spectrum of 5 (80 MHz, Acetone-d ₆)1	2
Figure 10. ¹ H spectrum of 7 (400 MHz, DMSO-d ₆)1	13
Figure 11. ¹ H spectrum of 9 (400 MHz, DMSO-d ₆)1	4
Figure 12. ¹ H spectrum of 10 (400 MHz, DMSO- d_6)	15
Figure 13. Absorbance (black) and fluorescence (red) spectra of 1 measured in anhydrous and	
deaerated dichloromethane1	6
Figure 14. Absorbance (black) and fluorescence (red) spectra of 2 measured in anhydrous and	
deaerated dichloromethane1	6
Figure 15. Absorbance (black) and fluorescence (red) spectra of 3 measured in anhydrous and	
deaerated dichloromethane1	17
Figure 16. Absorbance (black) and fluorescence (red) spectra of 4 measured in anhydrous and	
deaerated dichloromethane1	17
Figure 17. Absorbance (black) and fluorescence (red) spectra of 5 measured in anhydrous and	
deaerated dichloromethane1	8
Figure 18. Absorbance (black) and fluorescence (red) spectra of 6 measured in anhydrous and	
deaerated dichloromethane1	8
Figure 19. Absorbance (black) and fluorescence (red) spectra of 7 measured in anhydrous and	
deaerated dichloromethane1	9
Figure 20. Absorbance (black) and fluorescence (red) spectra of 8 measured in anhydrous and	
deaerated dichloromethane1	9
Figure 21. Absorbance (black) and fluorescence (red) spectra of 9 measured in anhydrous and	
deaerated dichloromethane2	20
Figure 22. Oxidation cyclic voltamogram of 1 measured in 0.1 M TBA•PF ₆ in anhydrous DCM	
at a scan rate of 100 mV/sec2	21
Figure 23. Reduction cyclic voltamogram of 1 measured in 0.1 M TBA•PF ₆ in anhydrous DCM	
at a scan rate of 100 mV/sec2	21
Figure 24. Oxydation cyclic voltamogram of 2 measured in 0.1 M TBA•PF ₆ in anhydrous DCM	Ĺ
at a scan rate of 100 mV/sec2	22
Figure 25. Reduction cyclic voltamogram of 2 measured in 0.1 M TBA•PF ₆ in anhydrous DCM	
at a scan rate of 100 mV/sec	22
Figure 26. Oxydation cyclic voltamogram of 3 measured in 0.1 M TBA•PF ₆ in anhydrous DCM	l
at a scan rate of 100 mV/sec	23
Figure 27. Reduction cyclic voltamogram of 3 measured in 0.1 M TBA•PF ₆ in anhydrous DCM	
at a scan rate of 100 mV/sec	23
Figure 28. Oxydation cyclic voltamogram of 4 measured in 0.1 M TBA•PF ₆ in anhydrous DCM	1
at a scan rate of 100 mV/sec	24

Figure 29. Reduction cyclic voltamogram of 4 measured in 0.1 M TBA•PF ₆ in anhydrous DCM
at a scan rate of 100 mV/sec24
Figure 30. Oxydation cyclic voltamogram of 5 measured in 0.1 M TBA•PF ₆ in anhydrous DCM
at a scan rate of 100 mV/sec
Figure 31. Reduction cyclic voltamogram of 5 measured in 0.1 M TBA•PF ₆ in anhydrous DCM
at a scan rate of 100 mV/sec
Figure 32. Oxydation cyclic voltamogram of 6 measured in 0.1 M TBA•PF ₆ in anhydrous DCM
at a scan rate of 100 mV/sec
Figure 33. Reduction cyclic voltamogram of 6 measured in 0.1 M TBA•PF ₆ in anhydrous DCM
at a scan rate of 100 mV/sec
Figure 34. Oxydation cyclic voltamogram of 7 measured in 0.1 M TBA•PF ₆ in anhydrous DCM
at a scan rate of 100 mV/sec
Figure 35. Reduction cyclic voltamogram of 7 measured in 0.1 M TBA•PF ₆ in anhydrous DCM
at a scan rate of 100 mV/sec27
Figure 36. Oxydation cyclic voltamogram of 8 measured in 0.1 M TBA•PF ₆ in anhydrous DCM
at a scan rate of 100 mV/sec
Figure 37. Reduction cyclic voltamogram of 8 measured in 0.1 M TBA•PF ₆ in anhydrous DCM
at a scan rate of 100 mV/sec
Figure 38. Oxydation cyclic voltamogram of 9 measured in 0.1 M TBA•PF ₆ in anhydrous DCM
at a scan rate of 100 mV/sec
Figure 39. Reduction cyclic voltamogram of 9 measured in 0.1 M TBA•PF ₆ in anhydrous DCM
at a scan rate of 100 mV/sec
Table 1. Details of Crystal Structure Determination for 6

S4

Figure 5. ¹H spectrum of **3** (400 MHz, Acetone- d_6).

Figure 7. ¹H spectrum of **4** (400 MHz, Acetone-d₆).

Figure 9. ¹³C spectrum of **5** (80 MHz, Acetone- d_6).

Figure 10. ¹H spectrum of **7** (400 MHz, DMSO- d_6).

Figure 12. ¹H spectrum of **10** (400 MHz, DMSO- d_6).

Figure 13. Absorbance (black) and fluorescence (red) spectra of 1 measured in anhydrous and deaerated dichloromethane. Excitation wavelength: 357 nm.

Figure 14. Absorbance (black) and fluorescence (red) spectra of 2 measured in anhydrous and deaerated dichloromethane. Excitation wavelength: 338 nm.

Figure 15. Absorbance (black) and fluorescence (red) spectra of 3 measured in anhydrous and deaerated dichloromethane. Excitation wavelength: 424 nm.

Figure 16. Absorbance (black) and fluorescence (red) spectra of 4 measured in anhydrous and deaerated dichloromethane. Excitation wavelength: 466 nm.

Figure 17. Absorbance (black) and fluorescence (red) spectra of 5 measured in anhydrous and deaerated dichloromethane. Excitation wavelength: 343 nm.

Figure 18. Absorbance (black) and fluorescence (red) spectra of 6 measured in anhydrous and deaerated dichloromethane. Excitation wavelength: 387 nm.

Figure 19. Absorbance (black) and fluorescence (red) spectra of 7 measured in anhydrous and deaerated dichloromethane. Excitation wavelength: 452 nm.

Figure 20. Absorbance (black) and fluorescence (red) spectra of 8 measured in anhydrous and deaerated dichloromethane. Excitation wavelength: 375 nm.

Figure 21. Absorbance (black) and fluorescence (red) spectra of 9 measured in anhydrous and deaerated

dichloromethane. Excitation wavelength: 457 nm.

Figure 22. Oxidation cyclic voltamogram of 1 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan

Figure 23. Reduction cyclic voltamogram of 1 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan

Figure 24. Oxydation cyclic voltamogram of 2 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan

Figure 25. Reduction cyclic voltamogram of 2 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan

Figure 26. Oxydation cyclic voltamogram of 3 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan

rate of 100 mV/sec.

Figure 27. Reduction cyclic voltamogram of 3 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan

Figure 28. Oxydation cyclic voltamogram of 4 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan

rate of 100 mV/sec.

Figure 29. Reduction cyclic voltamogram of 4 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan

Figure 30. Oxydation cyclic voltamogram of 5 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan

Figure 31. Reduction cyclic voltamogram of 5 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan

Figure 32. Oxydation cyclic voltamogram of 6 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan

rate of 100 mV/sec.

Figure 33. Reduction cyclic voltamogram of 6 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan

Figure 34. Oxydation cyclic voltamogram of 7 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan

Figure 35. Reduction cyclic voltamogram of 7 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan

Figure 36. Oxydation cyclic voltamogram of 8 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan

Figure 37. Reduction cyclic voltamogram of 8 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan

Figure 38. Oxydation cyclic voltamogram of 9 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan

Figure 39. Reduction cyclic voltamogram of 9 measured in 0.1 M TBA•PF₆ in anhydrous DCM at a scan

Table 1. Details of Ca	ystal Structure Determination for 6.
------------------------	--------------------------------------

Formula	$C_{23}H_{16}N_2S_2$
CCSD no.	see remark 1
<i>Mw</i> (g/mol); F(000)	384.50 g/mol ; 800
Crystal color and form	Yellow plate
Crystal size (mm)	0.48 x 0.46 x 0.08
T (K); $d_{\text{calcd.}}$ (g/cm ³)	293 (2) ; 1.363
Crystal System	Orthorhombic
Space Group	P2 ₁ 2 ₁ 2 ₁
Unit Cell: <i>a</i> (Å)	6.0019 (16)
<i>b</i> (Å)	9.123 (3)
<i>c</i> (Å)	34.230 (9)
α (°)	90.000
β (°)	90.000
γ (°)	90.000
$V(\text{\AA}^3); \mathbf{Z}$	1874.3 (9) ; 4
θ range (°); completeness	2.58 - 70.03 ; 1.000
Reflections: collected /	20210 / 3569 ;
independent; R _{int}	0.034
$\mu (\text{mm}^{-1})$	2.639
Abs. Corr.	Semi-empirical
R1(F); wR(F ²) [I > 2 σ (I)]	0.0327; 0.0767
$R1(F)$; wR(F^2) (all data)	0.0390; 0.0790
GoF(F ²)	0.928
Max. residual e ⁻ density	$0.146 e^{} Å^{-3}$