Electronic Supplementary Information

Role of Vibrational Deactivation in the Stereoselective Photooxygenation of Oxazolidinone-functionalized Enecarbamates

Marissa Solomon^a, J. Sivaguru^b, Steffen Jockusch^a, Waldemar Adam^c, Nicholas J. Turro^a

[a]Department of Chemistry, Columbia University, 3000 Broadway New York, NY 10027, USA [b]Department of Chemistry and Molecular Biology, North Dakota State University, Fargo, ND 58105, USA [c]The Department of Chemistry, University of Puerto Rico, Facundo Bueso 110, Rio Piedras, PR 00931

1) General

Trans-4-octene was obtained from Alfa Aesar and 1-methyl-1-cyclohexene from Aldrich. Both compounds were distilled before use. Hexamethyldisilane (HMDS) and 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (TFPP) were used as received from Aldrich. 1,4-Dimethylnapthalene endoperoxide was synthesized following established procedures.^{S1} Deuterated solvents were obtained from Cambridge Isotope Laboratories and kept over dry NaHCO₃. The *Z* and *E* enecarbamates were synthesized as previously described.^{S2} ¹H-NMR spectra were obtained using 400MHz Bruker NMR instrument.

2) Reaction Procedures

a) Exemplar procedure for competitive kinetics to determine k_{cq} :

Stock solution of HMDS [0.35ml to 25ml with CDCl₃], TFPP [5.26mg to 10ml with CDCl₃], *trans*-4-octene [*Stock 1*: 0.15ml to 5ml with CDCl₃; *Stock 2*: 0.2ml Stock 1 diluted to 5ml with CDCl₃] and enecarbamate [147.2mg to 25 ml with CDCl₃] were made up. Using the stock solutions, 0.45 ml of the enecarbamate, 0.1ml *trans*-4-octene and 0.05ml TFPP were added to NMR tube. Oxygen was bubbled into samples and they were irradiated under ambient conditions using a 300W halogen lamp and a <400 nm cutoff filter. Low conversions (<20%) were maintained. After irradiation, 0.1ml of HMDS stock solution was added and the sample characterized using ¹H-NMR. Chemical quenching rates were calculated based on the disappearance of enecarbamate and *trans*-4-octene peaks and therefore the HMDS was used as a standard to calculate the amount of enecarbamate remaining after irradiation.

In later experiments 1a was used as a standard in addition to *trans*-4-octene.

b) General procedure for ${}^{1}O_{2}$ chemiluminescence quenching experiment to determine k_{q} :

All compounds were purified, dried and pumped for several days under vacuum at ambient temperature. Stock solutions of enecarbamate quenchers, 1-methyl-1-cyclohexene (0.05M), *trans*-4-octene (0.4M) and 1,4-dimethylnaphthalene endoperoxide (10mM) were prepared. In a quartz cuvette ($1 \times 1 \times 4$ cm) with 200µl of 1,4-dimethylnaphthalene endoperoxide solution in 2700µl CDCl₃, aliquots of quencher (enecarbamate or standard) were added. After the addition of each aliquot chemiluminescence spectra were recorded from 1200 to 1340nm at 22°C using a modified Fluorolog 2 spectrofluorimeter (Horiba Jobin-Yvon) in conjunction with a NIR sensitive photomultiplier detector (H9170-45, Hamamatsu) (Figure S3). Stern-Volmer constants (K_{SV}) were determined from the slope of the plot of the ¹O₂ phosphorescence intensity vs quencher concentration (Figure S4). To convert K_{SV} into the total quenching rate constant (k_q) using Eqn S1, the singlet oxygen lifetime in the absence of quencher (τ_0) is required. Because τ_0 under our experimental condition is expected to be shorter than the published value in high purity CDCl₃, we determined τ_0 using *trans*-4-octene as standard ($k_q = 1.8 \times 10^4 \text{ M}^{-1}\text{s}^{-1}$).^{S3}

$$K_{SV} = k_q \tau_0 \tag{S1}$$

3) ¹H-NMR spectra for Competitive Kinetics:

Figure S1: ¹H NMR spectrum of the enecarbamate standard **1a** before irradiation. The disappearance of the enecarbamate was monitored mainly with the vinylic hydrogen peaks.

Figure S2: ¹H NMR spectra of enecarbamates 1a (standard) and 2b before irradiation.

4) Stern-Volmer Quenching to determine the Total Quenching Rate Constants (k_q):

Figure S3: Chemiluminescence (phosphorescence) spectra of singlet oxygen generated by decomposition of 1,4-dimethylnaphthalene endoperoxide (22 °C) in the presence of varying concentrations of 2c-3'S.

Figure S4: Stern-Volmer plot for 2c-3'S using data obtained in Figure S3.

5) Enantioselectivities as a function of C-4 alkyl group (15°C, CDCl₃):⁸⁴⁻⁷

$$s = \frac{k_{cq}^{3'R}}{k_{cq}^{3'S}} = \frac{\ln[1 - C(1 + ee_{_{MDB}})]}{\ln[1 - C(1 - ee_{_{MDB}})]}$$
(S2)

Table S1

Entry	Substrate ^a	Configuration		s ^a	S ^b
		<i>C</i> -4	<i>C</i> -3'	15°C	20°C
1.	Z(Me)- 1a	R	R/S	1.2 [<i>R</i>]	1.3 [R]
2.	<i>Z</i> (<i>Me</i>)-1b	S	R/S	0.7 [<i>S</i>]	
3.	<i>E</i> (<i>Me</i>)- 1 c	R	R/S	9.1 [<i>R</i>]	
4.	<i>E(Me)</i> -1d	S	R/S	0.1 [<i>S</i>]	0.5 [S]
5.	$Z(^{i}Pr)$ -2a	R	R/S	2.2 [<i>R</i>]	1.2 [R]
6.	$Z(^{i}Pr)$ - 2b	S	R/S	0.7 [<i>S</i>]	0.8 [S]
7.	$E(^{i}Pr)$ - 2 c	R	R/S	5.0 [<i>R</i>]	1.8 [R]
8.	$E(^{i}Pr)$ -2d	S	R/S	0.3 [<i>S</i>]	0.6 [S]
9.	$Z(^{t}Bu)$ - 6b	S	R/S	0.7 [<i>R</i>]	
10.	$E(^{t}Bu)$ -6d	S	R/S	0.3 [<i>S</i>]	

The s^a calculated using ee_{mdb} and C, s^b calculated using k_{cq} values in Table S2.

The stereoselectivity (*s*) factor^{S8} is a ratio of the relative reactive rate constants (chemical quenching) between two epimers that only differ in the *R/S* configuration at the C-3' center (Eqn S2). In previous work (Table S1)^{S5,S 9} the *s*-factor (*s*^a) was determined as only a ratio via the enantioselectivity in the MDB product (*ee*_{MDB}) and *C*, the conversion (Eqn S2). While *ee* may change with conversion, the *s*-factor is conversion independent and is a way of comparing different compounds where the *ee* has been determined over different conversion. However, the *s*-factors can also be computed (Eqn S2) from k_{cq} values shown in Table S2 (*s*^b) and compared to the *s*-factors in Table S1. The difference

in the s^a and s^b values can be attributed to the two sets of experiments being conducted at different temperatures (Table S3) and different concentrations.

Entry	Substrate ^a	Config	guration	Chemical Quenching[M ⁻¹ s ⁻¹]
		<i>C</i> -4	<i>C</i> -3'	$(k_{\rm cq} \ge 10^{-5})$
1.	Z(Me)- 1 a	R	R	2.4
2.	Z(Me)- 1a	R	S	1.8
3.	<i>E</i> (<i>Me</i>)-1d	S	R	0.9
4.	<i>E</i> (<i>Me</i>)-1d	S	S	1.9
5.	$Z(^{i}Pr)$ -2a	R	R	1.6
6.	$Z(^{i}Pr)$ -2a	R	S	1.3
7.	$Z(^{i}Pr)$ - 2b	S	R	1.3
8.	$Z(^{i}Pr)$ - 2b	S	S	1.6
9.	$E(^{i}Pr)$ - 2 c	R	R	1.6
10.	$E(^{i}Pr)$ - 2 c	R	S	0.9
11.	$E(^{i}Pr)$ -2d	S	R	1.0
12.	$E(^{i}Pr)$ - 2d	S	S	1.7

Table S2

Entry	Temp ^a	% ee _{MDB}	%C	s ^a
	°C			
1.	Z(Me)-1a	8 [S]	5	1.2
2.	<i>Z</i> (<i>Me</i>)-1b	63 [R]	17	5.0
3.	<i>E(Me)</i> -1c	78 [R]	37	13.0
4.	<i>E(Me)</i> -1d	88 [R]	43	31.0

Table S3 – Determination of *s*-factor for 2c upon photoxygenation in in $CDCl_3$

6) Structure Matrix:

i-Pr

ò

0 **∢** Н

(Z)

6a

t-Bu

(Z)

6b

i-Pr

Č

t-Bu

5

7) References:

- S1. Ben-Shabat, S.; Itagaki, Y.; Jockusch, S.; Sparrow, J. R.; Turro, N. J.; Nakanishi, K., Formation of a nonaoxirane from A2E, a lipofuscin fluorophore related to macular degeneration, and evidence of singlet oxygen involvement. *Angew. Chem., Int. Ed.* 2002, *41*, 814-817.
- S2. Adam, W.; Bosio, S. G.; Turro, N. J.; Wolff, B. T., Enecarbamates as Selective Substrates in Oxidations: Chiral-Auxiliary-Controlled Mode Selectivity and Diastereoselectivity in the [2+2] Cycloaddition and Ene Reaction of Singlet Oxygen and in the Epoxidation by DMD and mCPBA. J. Org. Chem. 2004, 69, 1704-1715.
- S3. Tanielian, C.; Mechin, R., Interaction of singlet molecular oxygen with disubstituted olefins. Evidence for a physical quenching induced by the hydrocarbon chain. *J. Phys. Chem.* **1988**, *92*, 265-267.
- S4. Sivaguru, J.; Solomon, M. R.; Poon, T.; Jockusch, S.; Bosio, S. G.; Adam, W.; Turro, N. J., The Reaction of Singlet Oxygen with Enecarbamates: A Mechanistic Playground for Investigating Chemoselectivity, Stereoselectivity, and Vibratioselectivity of Photooxidations. Acc. Chem. Res. 2008, 41, 387-400.
- S5. Sivaguru, J.; Solomon, M. R.; Saito, H.; Poon, T.; Jockusch, S.; Adam, W.; Inoue, Y.; Turro, N. J., Conformationally controlled (entropy effects), stereoselective vibrational quenching of singlet oxygen in the oxidative cleavage of oxazolidinone-functionalized enecarbamates through solvent and temperature variations. *Tetrahedron* 2006, *62*, 6707-6717.
- S6. Poon, T.; Sivaguru, J.; Franz, R.; Jockusch, S.; Martinez, C.; Washington, I.; Adam, W.; Inoue, Y.; Turro, N. J., Temperature and Solvent Control of the Stereoselectivity in the Reactions of Singlet Oxygen with Oxazolidinone-Substituted Enecarbamates. J. Am. Chem. Soc. 2004, 126, 10498-10499.
- S7. Includes previously unpublished data.
- S8. Kagan, H. B.; Fiaud, J. C., Kinetic resolution. *Top. Stereochem.* 1988, 18, 249-330.
- S9. Poon, T.; Turro, N. J.; Chapman, J.; Lakshminarasimhan, P.; Lei, X.; Jockusch, S.; Franz, R.; Washington, I.; Adam, W.; Bosio, S. G., Stereochemical Features of the Physical and Chemical Interactions of Singlet Oxygen with Enecarbamates. *Org. Lett.* 2003, *5*, 4951-4953.