Supporting Information

for

Photophysics and Stability of Cyano-Substituted

Boradiazaindacene Dyes

Katarzyna Cieślik-Boczula,[‡] Kevin Burgess,^{#,*} Lingling Li,[#] Binh Nguyen,[#]

Lesley Pandey,[†] Wim M. De Borggraeve,[†] Mark Van der Auweraer,[†] and Noël Boens^{†,*}

[‡] Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland

[#] Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842-3012, USA

[†] Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200f – bus 02404, 3001 Leuven, Belgium

Figure S1	. S2
Figure S2	. S3
Figure S3	. S4
Figure S4	. S5
Figure S5	. S6
Figure S6	. S7
Figure S7	. S8

^{*} Corresponding authors: Kevin Burgess: Tel +1 979 845 4345; fax: +1 979 845 1881; e-mail: <u>burgess@tamu.edu</u> – Noël Boens: Tel +32 16 327 497; fax: +32 16 327 990; e-mail: <u>Noel.Boens@chem.kuleuven.be</u>

Figure S1. Plot of the Stokes shifts $\Delta \overline{v}$ of **4CN** for the solvents of Table 1 versus the Lippert solvent parameter $\Delta f = f(\varepsilon) - f(n^2)$. The numbers refer to the solvents of Table 1. The straight line represents the average value of $\Delta \overline{v} = (4.3 \pm 0.5) \times 10^2 \text{ cm}^{-1}$.

Figure S2. **4CN** in acetone. (A) Biexponential fit to $\ln A_{511 nm}$ as a function of the ageing time. (B) Biexponential fit to $\ln A_{427 nm}$ as a function of the ageing time.

Figure S3. (A) Absorption spectra of **2CN** in different solvents normalized to 1.0. (B) Corresponding normalized fluorescence emission spectra (λ_{ex} = 488nm). Because all the spectra have similar shapes and for better clarity, only a limited number of spectra are shown.

Figure S4. Plots of the Stokes shifts $\Delta \overline{v}$ (in cm⁻¹) of **2**CN versus the Lippert solvent parameter $\Delta f = f(\varepsilon) - f(n^2)$. The numbers refer to the solvents of Table 3. (A) The straight line represents the best fit to the data: r = 0.274, slope = $(1.1 \pm 1.0) \times 10^2$ cm⁻¹, intercept = $(4.2 \pm 0.2) \times 10^2$ cm⁻¹. (B) The straight line represents the average value of $\Delta \overline{v} = (4.4 \pm 0.4) \times 10^2$ cm⁻¹.

Figure S5. Plots of the experimental \overline{v}_{abs} and \overline{v}_{em} (both in cm⁻¹) of **2CN** as a function of $f(n^2)$. The numbers refer to the solvents of Table 3. The straight lines represent the best fits to \overline{v}_{abs} [r = 0.830, slope = (-4.4 ± 0.8) ×10³ cm⁻¹, intercept = (20.2 ± 0.2) ×10³ cm⁻¹] and \overline{v}_{em} [r = 0.910, slope = (-4.9 ± 0.6) ×10³ cm⁻¹, intercept = (19.8 ± 0.1) ×10³ cm⁻¹.

Figure S6. Normalized absorption spectra of **2**CN in DMF (blue solid line) and in DMF + H^+ (black solid line). Corresponding normalized fluorescence emission spectra of **2**CN in DMF ($\lambda_{ex} = 430$ nm, blue dotted line) and in DMF + H^+ ($\lambda_{ex} = 488$ nm, black dotted line).

Figure S7. (A) Absorption spectra of **2CN** in acetone for different ageing times: 5' (a), 10' (b), 15' (c), 20' (d), 30' (e), 40' (f), 50' (g), 60' (h), 70' (i), 85' (j), 100' (k), 115' (l), 135' (m), 195' (n).

(B) Fluorescence emission spectra (λ_{ex} = 430 nm) of **2**CN in acetone for different ageing times: 5' (a), 10' (b), 15' (c), 20' (d), 25' (e), 30' (f), 35' (g), 45' (h), 55' (i), 70' (j), 85' (k), 115' (l), 175' (m).