Computational and Experimental Evidence for the First Direct Spectroscopic Detection of the Pyrylogen Neutral Redox Partner

Tamer T. El-Idreesy*^a and Edward L. Clennan*^b

^a Department of Chemistry, Faculty of Science, Cairo University, Giza, EGYPT. ^bDepartment of Chemistry, University of Wyoming, 1000 East University Avenue, Laramie, 82071 WY. E-mail: <u>tamertawhid@yahoo.com</u> and <u>clennane@uwyo.edu</u>

Supplementary Material

Table. Computational and X-Ray Structural Parameters for Pyrylogen Dications.														
	2b ^{2+a}	2b ^{2+b}	2b ^{2+c}	2b ²⁺ (X-Ray)	2c^{2+a} # 1	2c^{2+b} # 2	2c^{2+c} # 2	2c²⁺(X-Ray)						
E(a.u.)	-1248.39465653	-1248.72084769	-1244.39702827		-1245.19991910	-1245.20789247	-1241.32981259							
d ₁₂	1.354Å	1.349Å	1.354Å	1.344Å	1.354Å	1.354Å	1.354Å	1.349Å						
d ₁₆	1.354Å	1.349Å	1.354Å	1.346 Å	1.354Å	1.354Å	1.354Å	1.345Å						
d _{44'}	1.487Å	1.485Å	1.478Å	1.486Å	1.487Å	1.487Å	1.479Å	1.485Å						
d _{1'2'} 1.348Å 1.343Å 1.352Å 1.348Å 1.355Å 1.355Å 1.355Å 1.355Å														
d _{1'6'}	$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
d _{2a}	1.446Å	1.445Å	1.444Å	1.459Å	1.446Å	1.446Å	1.443Å	1.459Å						
d _{6a'}	1.446Å	1.445Å	1.444Å	1.459Å	1.445Å	1.446Å	1.444Å	1.455Å						
>216	124.76°	124.44°	124.31°	123.08°	124.80°	124.78°	124.37°	123.44°						
>2'1'6'	120.33°	120.27°	121.14°	121.22°	120.32°	120.49°	121.41°	121.25°						
>344'3'	40.54°	41.61°	46.10°	33.86°	40.38°	41.45°	46.70°	40.29°						
>12ab	-15.68°	16.68°	-23.92°	-9.76º	-15.70°	-15.67°	-23.60°	2.76°						
>16a'b'	-15.46°	16.86°	-23.88°	14.74°	-15.72°	-16.23°	-23.88°	-3.48°						
>3'2'N7	178.55°	178.62°	177.980	178.78°	178.510	176.88°	176.06°	174.30°						
>1'789	95.25°	95.04°	97.83 ⁰	124.10°	153.89°	18.53°	15.510	1.65°						
>981011					0.76°	1.71°	1.50°	-4.41º						
>2'1'78 14.14° 12.41° 23.39° 61.54° 98.32° 62.31° 66.60° 92.91°														
a. B3LYP/6-3	1G(d). b. B3L	YP/6-311+G(2	2d,p). c. MP2/	6-31G(d).										

2b²⁺ B3LYP/6-31G(d)

Geometry

С	-2.111365	0.581275	0.476129	С	-0.768049	0.578873	0.875000	С	0.030210	1.690737	0.623565
С	-1.810120	2.792786	-0.450463	С	-2.632394	1.701738	-0.184567	С	-2.977141	-0.596754	0.750367
С	-2.497247	-1.905580	0.597290	С	-3.325893	-2.987912	0.855661	С	-5.089512	-1.552723	1.422194
С	-4.309025	-0.438902	1.173083	Η	-0.338456	-0.272202	1.385962	Н	-3.665500	1.732601	-0.503490
Н	-1.488195	-2.100618	0.251320	Η	-3.005777	-4.017015	0.745092	Н	-6.117848	-1.478218	1.758274
Η	-4.738081	0.542963	1.339535	0	-0.524563	2.738519	-0.029897	С	-2.174094	4.021088	-1.121465
С	-3.363455	4.092919	-1.884112	С	-1.349307	5.165305	-1.018086	С	-3.712529	5.274509	-2.521947
Н	-3.995983	3.220156	-2.010078	С	-1.712295	6.344264	-1.653945	Н	-0.445601	5.130882	-0.420481
С	-2.891338	6.402438	-2.406389	Η	-4.619203	5.319739	-3.116354	Н	-1.082083	7.222805	-1.561520
Н	-3.170137	7.326442	-2.903724	С	1.425241	1.862808	0.964281	С	2.038923	1.012424	1.913674
С	2.192487	2.878064	0.347337	С	3.379034	1.176872	2.233114	Н	1.464399	0.249051	2.428205
С	3.534235	3.028234	0.668605	Η	1.740387	3.523335	-0.397139	С	4.129902	2.181164	1.610494
Н	3.841290	0.530481	2.971975	Η	4.121703	3.801009	0.183589	Н	5.179332	2.303968	1.860460
Ν	-4.598300	-2.803356	1.260970	С	-5.540091	-3.990606	1.519848	Н	-6.057296	-3.733639	2.447445
Н	-6.259848	-3.961126	0.696963	С	-4.851939	-5.318466	1.613005	С	-4.760624	-6.146374	0.482837
С	-4.320551	-5.754515	2.837557	С	-4.141044	-7.392679	0.576301	Н	-5.193706	-5.827958	-0.463000
С	-3.702524	-7.000406	2.927127	Η	-4.409546	-5.130580	3.724245	С	-3.612031	-7.818350	1.797049
Н	-4.085704	-8.035587	-0.296603	Η	-3.306723	-7.340340	3.879089	Н	-3.140767	-8.793668	1.871687
Zer	o-point corre	ection=	0.4	4289	5 (Hartree/P	article)					
The	ermal correct	tion to Ener	gy=	0.46	7484						
The	ermal correct	tion to Enth	alpy=	0.4	68428						
Thermal correction to Gibbs Free Energy= 0.384											
Sum of electronic and zero-point Energies= -1247.951762											

2b²⁺ B3LYP/6-311+G(2d,p)

Geometry and energies

С	-2.102543	0.585726	0.493074	С	-0.767313	0.592939	0.900102	С	0.027166	1.697886	0.637576
С	-1.802216	2.779092	-0.451702	С	-2.619229	1.692116	-0.183341	С	-2.966234	-0.589427	0.775170
С	-2.490495	-1.893374	0.621608	С	-3.316558	-2.970269	0.884871	С	-5.067128	-1.537328	1.459627
С	-4.289822	-0.429512	1.205497	Н	-0.337677	-0.247804	1.422109	Η	-3.647437	1.718959	-0.508949
Η	-1.485983	-2.090962	0.272333	Η	-2.995890	-3.996877	0.774620	Η	-6.090412	-1.459024	1.802186
Η	-4.716505	0.550341	1.372369	0	-0.522132	2.736167	-0.026893	С	-2.172960	3.997859	-1.132798
С	-3.341798	4.046267	-1.918393	С	-1.377486	5.154296	-1.012608	С	-3.698336	5.215610	-2.563932
Η	-3.953749	3.164422	-2.056440	С	-1.748928	6.321739	-1.654212	Η	-0.488602	5.140118	-0.397311
С	-2.906538	6.355778	-2.430985	Н	-4.589028	5.242338	-3.178159	Η	-1.141503	7.211185	-1.547584
Η	-3.191826	7.271498	-2.933843	С	1.420581	1.868051	0.978670	С	2.023341	1.039727	1.946280
С	2.196097	2.855473	0.339660	С	3.359452	1.199513	2.263448	Η	1.444093	0.295402	2.476814
С	3.534283	2.999960	0.657178	Η	1.754180	3.485469	-0.419703	С	4.118258	2.175812	1.618478
Η	3.813468	0.570501	3.018101	Н	4.129024	3.751221	0.153860	Η	5.165803	2.294653	1.866151
Ν	-4.581347	-2.784862	1.296198	С	-5.523355	-3.965956	1.563399	Η	-6.009612	-3.723884	2.508004
Η	-6.265448	-3.919691	0.765679	С	-4.846955	-5.298693	1.613993	С	-4.792675	-6.104478	0.472759
С	-4.292192	-5.760626	2.811861	С	-4.180547	-7.351527	0.526721	Η	-5.247537	-5.769150	-0.453432
С	-3.680809	-7.006931	2.862756	Н	-4.356875	-5.157420	3.711429	С	-3.623096	-7.800864	1.720053
Η	-4.153076	-7.977631	-0.356094	Η	-3.265617	-7.366645	3.795696	Η	-3.157015	-8.777307	1.764118
Zer	o-point corre	ection=	0.4	4008	2 (Hartree/P	article)					
The	ermal correct	tion to Ener	gy=	0.46	4698						
The	ermal correct	tion to Enth	alpy=	0.4	65642						
The	ermal correct	tion to Gibbs	s Free Energ	y=	0.381502						
Sum of electronic and zero-point Energies= -1248.280766											

2b²⁺ MP2/6-31G(d)

Geometry

С	-2.142792	0.558464	0.461722	С	-0.797016	0.532745	0.844680	С	0.005659	1.645143	0.610357
С	-1.825730	2.774087	-0.438391	С	-2.660727	1.692682	-0.173578	С	-3.013250	-0.606945	0.725773
С	-2.585173	-1.910332	0.435235	С	-3.416163	-2.992679	0.691539	С	-5.090262	-1.551700	1.514633
С	-4.293517	-0.442042	1.275978	Н	-0.362492	-0.335627	1.329393	Н	-3.702296	1.748320	-0.473360
Η	-1.614413	-2.098474	-0.015942	Η	-3.141074	-4.022523	0.487280	Н	-6.084403	-1.480511	1.945674
Η	-4.671802	0.539415	1.549546	0	-0.537969	2.707890	-0.027366	С	-2.177041	4.012523	-1.092052
С	-3.269077	4.046831	-1.983454	С	-1.433231	5.181831	-0.829507	С	-3.609421	5.244887	-2.602763
Η	-3.813780	3.139582	-2.234994	С	-1.792963	6.372131	-1.452378	Н	-0.605441	5.160094	-0.125872
С	-2.878130	6.407788	-2.335804	Н	-4.439346	5.273230	-3.303112	Н	-1.232556	7.279129	-1.243907
Η	-3.151505	7.341619	-2.819876	С	1.400730	1.805295	0.946312	С	1.955874	1.053758	2.002326
С	2.201832	2.704933	0.212667	С	3.302578	1.205187	2.315724	Н	1.334261	0.399389	2.609351
С	3.548062	2.837506	0.535679	Н	1.779034	3.267849	-0.615087	С	4.100679	2.090489	1.582491
Η	3.731386	0.641256	3.139238	Н	4.173476	3.518768	-0.034325	Н	5.153083	2.201565	1.829889
Ν	-4.643641	-2.796813	1.223480	С	-5.579202	-3.977083	1.464991	Н	-6.129273	-3.723379	2.375203
Η	-6.272133	-3.979742	0.617601	С	-4.846090	-5.269089	1.598202	С	-4.733131	-6.129214	0.495572
С	-4.261615	-5.617885	2.825380	С	-4.042673	-7.335867	0.623565	Н	-5.212153	-5.875021	-0.449327
С	-3.572940	-6.823896	2.946678	Н	-4.370202	-4.964676	3.690422	С	-3.460033	-7.680026	1.846111
Η	-3.971050	-8.011361	-0.224409	Н	-3.136565	-7.104742	3.901279	Н	-2.933125	-8.624881	1.947604
Zer	o-point corre	ection=	0.44	43039	9 (Hartree/Pa	article)					
The	ermal correct	tion to Ener	gy=	0.46	58241						
The	ermal correct	tion to Enth	alpy=	0.4	69185						
The	ermal correct	tion to Gibbs	s Free Energ	y=	0.383822						
Sur	n of electron	ic and zero-	point Energi	es=	-1243.953	3989					

2c²⁺ B3LYP/6-31G(d) Isomer #1

Geometry

C -2.075689 0.421927 -0.004070 C -0.694391 0.331642 0.214034 C 0.081053 1.487879 0.224588

С	-1.862214	2.817727	-0.237505	С	-2.659841	1.676622	-0.223202	С	-2.915435	-0.805396	-0.006153
С	-2.467602	-1.992794	-0.608982	С	-3.274658	-3.116333	-0.612381	С	-4.952341	-1.972136	0.570477
С	-4.187947	-0.819798	0.590195	Η	-0.215031	-0.622817	0.385010	Н	-3.723112	1.777816	-0.394200
Н	-1.507203	-2.046609	-1.109383	Н	-2.973580	-4.046288	-1.080461	Н	-5.929032	-2.032752	1.033937
Н	-4.585655	0.053693	1.094627	0	-0.536189	2.670410	-0.006985	С	-2.289573	4.181580	-0.453218
С	-3.557974	4.452080	-1.019374	С	-1.447351	5.260504	-0.095937	С	-3.965919	5.762583	-1.220885
Н	-4.208517	3.643307	-1.336245	С	-1.869449	6.567416	-0.294071	Н	-0.481784	5.068338	0.357626
С	-3.125988	6.822035	-0.856592	Η	-4.933652	5.964260	-1.668342	Н	-1.224844	7.391823	-0.007105
Н	-3.450885	7.846287	-1.012229	С	1.507828	1.582554	0.436280	С	2.219722	0.498004	1.001331
С	2.208892	2.756853	0.074990	С	3.589916	0.590414	1.197577	Н	1.701233	-0.400369	1.320610
С	3.580843	2.834927	0.268206	Н	1.679674	3.587244	-0.378222	С	4.273669	1.755558	0.829461
Н	4.128849	-0.239017	1.643661	Η	4.116135	3.733104	-0.022067	Н	5.346755	1.822160	0.980848
Ν	-4.498768	-3.097140	-0.032651	С	-5.330084	-4.329192	-0.022675	Н	-6.368252	-4.040345	-0.210177
Н	-5.006883	-4.976334	-0.837648	С	-5.264785	-5.130694	1.292536	0	-5.475346	-6.313334	1.298475
0	-5.016690	-4.344038	2.341241	С	-5.020700	-5.012854	3.641002	Н	-6.006366	-5.441944	3.826821
Н	-4.264530	-5.799119	3.650397	Η	-4.788680	-4.232139	4.362787				
Zer	o-point corre	ection=	0.4	0468	7 (Hartree/P	article)					
Thermal correction to Energy=				0.42	9229						
Thermal correction to Enthalpy-				0.4	20172						

Thermal correction to Enthalpy=0.430173Thermal correction to Gibbs Free Energy=0.346051Sum of electronic and zero-point Energies=-1244.795232

2c²⁺ B3LYP/6-31G(d) Isomer #2

Geometry

С	-2.255588	0.538999	0.069246	С	-0.891069	0.377720	0.342886	С	-0.044125	1.482116	0.308113
С	-1.881646	2.895194	-0.311336	С	-2.750887	1.809635	-0.252375	С	-3.170477	-0.632419	0.122403
С	-2.786736	-1.876842	-0.399807	С	-3.650465	-2.956680	-0.333022	С	-5.274304	-1.639799	0.746531
С	-4.448769	-0.532226	0.699182	Н	-0.481262	-0.591602	0.593038	Η	-3.799822	1.964335	-0.466690

Η	-1.825904	-2.015913	-0.882369	Н	-3.393641	-3.931878	-0.723365	Н	-6.259711	-1.610474	1.196083
Н	-4.800220	0.393517	1.140803	0	-0.576319	2.682406	-0.022190	С	-2.213710	4.265515	-0.631397
С	-3.438241	4.572713	-1.269971	С	-1.321991	5.313568	-0.304611	С	-3.756134	5.889208	-1.570984
Η	-4.123356	3.784403	-1.565012	С	-1.654476	6.627607	-0.602394	Н	-0.389547	5.094689	0.203068
С	-2.868558	6.918807	-1.235653	Н	-4.690278	6.117820	-2.073501	Н	-0.972711	7.429459	-0.338270
Η	-3.123087	7.948172	-1.469086	С	1.377962	1.502442	0.566853	С	1.999164	0.415512	1.226199
С	2.164610	2.604653	0.158015	С	3.365251	0.435474	1.467147	Н	1.413741	-0.426021	1.582377
С	3.531571	2.609882	0.396871	Н	1.705061	3.434875	-0.366047	С	4.134438	1.528931	1.051179
Η	3.834333	-0.394663	1.985060	Н	4.132888	3.452082	0.070299	Η	5.203960	1.538669	1.237995
Ν	-4.876694	-2.827560	0.229372	С	-5.742578	-4.022471	0.344029	Н	-6.712986	-3.725618	0.741973
Η	-5.898413	-4.444183	-0.653791	С	-5.070043	-5.078001	1.248719	0	-3.885752	-5.065055	1.499368
0	-5.973674	-5.956024	1.631801	С	-5.502646	-7.083786	2.433469	Η	-4.761278	-7.649010	1.866749
Η	-5.068220	-6.712563	3.362702	Н	-6.392315	-7.679928	2.623979				
Zer	o-point corre	ection=	0.4	0477	8 (Hartree/P	article)					
The	ermal correct	tion to Ener	gy=	0.42	29270						
Thermal correction to Enthalpy= 0.430214											
The	ermal correct	tion to Gibbs	s Free Energ	y=	0.346867						
Sun	n of electron	ic and zero-	point Energi	es=	-1244.803	3114					

2c²⁺ MP2/6-31G(d) Isomer #2

Geometries and Energies

С	-2.287169	0.536518	0.064665	С	-0.924399	0.359754	0.329103	С	-0.072014	1.459897	0.305173
С	-1.894308	2.886455	-0.308568	С	-2.775504	1.811066	-0.243901	С	-3.205039	-0.621546	0.114937
С	-2.873777	-1.830066	-0.514870	С	-3.738363	-2.911227	-0.441659	С	-5.266979	-1.647706	0.841906
С	-4.428647	-0.544017	0.796159	Н	-0.514656	-0.617941	0.562126	Η	-3.828568	1.982614	-0.442777
Н	-1.952000	-1.940746	-1.079472	Н	-3.529465	-3.867252	-0.907910	Н	-6.216120	-1.645222	1.367971
Н	-4.729616	0.358245	1.321643	0	-0.589796	2.666974	-0.021928	С	-2.209782	4.259273	-0.624129
С	-3.350674	4.553663	-1.398893	С	-1.381676	5.298009	-0.149832	С	-3.655279	5.878771	-1.692053

Н	-3.963561	3.757732	-1.815981	С	-1.706420	6.617279	-0.446755	Н	-0.515036	5.072297	0.465644
С	-2.839800	6.910761	-1.214055	Н	-4.523364	6.110255	-2.302718	Н	-1.080386	7.422607	-0.073000
Н	-3.085371	7.944319	-1.443324	С	1.347752	1.473104	0.564513	С	1.921384	0.462371	1.363413
С	2.154280	2.489842	0.011650	С	3.291558	0.474358	1.602123	Н	1.301061	-0.293784	1.839327
С	3.523428	2.481014	0.255255	Н	1.715518	3.255782	-0.622086	С	4.094177	1.477151	1.046445
Н	3.736147	-0.292257	2.230374	Н	4.152078	3.253347	-0.178866	Н	5.164759	1.478592	1.233460
Ν	-4.914229	-2.798534	0.221470	С	-5.764424	-4.000965	0.350089	Н	-6.728135	-3.717681	0.776037
Н	-5.936572	-4.421359	-0.645242	С	-5.037787	-5.016437	1.241915	0	-3.850239	-4.931780	1.504576
0	-5.895955	-5.950264	1.612282	С	-5.335359	-7.038728	2.418421	Н	-4.553281	-7.541227	1.851151
Н	-4.934979	-6.630031	3.344914	Н	-6.178066	-7.697593	2.604919				
Zer	o-point corre	ection=	0.4	0611	1 (Hartree/P	article)					
The	ermal correct	tion to Ener	gy=	0.43	1008						
The	ermal correct	tion to Enth	alpy=	0.4	31953						
The	ermal correct	tion to Gibb	s Free Energ	y=	0.348057						
Sun	n of electron	ic and zero-	point Energi	es=	-1240.923	3701					

	2b ^{2+a}	2b ^{2+b}
E(a.u.)	-1240.40425317	
d ₁₂	1.352Å	1.351Å
d ₁₆	1.352Å	1.351Å
d ₄₄ ,	1.462Å	1.464Å
d _{1'2'}	1.339Å	1.337Å
d _{1'6'}	1.339Å	1.341Å
d_{2a}	1.429Å	1.430Å
$\mathbf{d}_{\mathbf{6a'}}$	1.429Å	1.430Å
>216	121.79°	121.86°
>2'1'6'	119.41°	119.40°
>344'3'	25.97°	26.65°

Table. CIS Structural Data

>12ab	-8.13°	-6.41°
>16a'b'	-8.25°	-6.54°
>3'2'N7	177.06°	177.00°
>1'789	109.18°	104.19°
>981011		
>2'1'78	41.05°	27.55°

a. CIS/6-31G(d). b. CIS/6-31+G(d)

2b²⁺ CIS/6-31G(d)

Geometry

С	-2.105097	0.488054	0.233657	С	-0.738408	0.481866	0.566767	С	0.037913	1.620184	0.449241
С	-1.821505	2.829859	-0.363441	С	-2.622298	1.710147	-0.233336	С	-2.938939	-0.705798	0.363565
С	-2.395611	-1.998129	0.300495	С	-3.204441	-3.094635	0.425061	С	-5.074575	-1.758264	0.677243
С	-4.326845	-0.619851	0.559025	Н	-0.276923	-0.404918	0.943842	Н	-3.647760	1.789179	-0.522759
Η	-1.352969	-2.164871	0.119157	Н	-2.817469	-4.091912	0.377524	Н	-6.133515	-1.717616	0.836969
Η	-4.827906	0.321721	0.659861	0	-0.516971	2.762185	-0.015116	С	-2.234809	4.115986	-0.830240
С	-3.519122	4.327976	-1.397635	С	-1.351384	5.220599	-0.729832	С	-3.888793	5.569955	-1.833077
Η	-4.209287	3.515658	-1.514103	С	-1.736272	6.465153	-1.163963	Н	-0.383268	5.087731	-0.292419
С	-3.000774	6.646917	-1.717297	Н	-4.857727	5.721450	-2.269423	Н	-1.064061	7.297401	-1.075503
Η	-3.299247	7.620339	-2.060328	С	1.428302	1.731884	0.760926	С	2.133991	0.687569	1.414909
С	2.137151	2.909585	0.412816	С	3.464823	0.820705	1.697719	Н	1.631476	-0.210409	1.716338
С	3.475556	3.029222	0.695549	Н	1.629308	3.704415	-0.093696	С	4.144694	1.991295	1.338228
Η	3.990266	0.031095	2.200320	Н	4.005912	3.920939	0.420058	Н	5.190994	2.087709	1.562431
Ν	-4.524968	-2.977746	0.612269	С	-5.404067	-4.201404	0.682190	Н	-6.327960	-3.867761	1.130010
Η	-5.606490	-4.492913	-0.338676	С	-4.791012	-5.330810	1.467229	С	-4.348025	-6.472138	0.812909
С	-4.697046	-5.252897	2.854735	С	-3.808061	-7.526495	1.535991	Н	-4.438307	-6.553757	-0.256708
С	-4.156667	-6.301533	3.573840	Н	-5.058519	-4.382100	3.374988	С	-3.710911	-7.439833	2.913328
Η	-3.476436	-8.411024	1.024719	Н	-4.094537	-6.241816	4.644640	Н	-3.300146	-8.258269	3.475072

Zero-point correction=0.472467 (Hartree/Particle)Thermal correction to Energy=0.495815Thermal correction to Enthalpy=0.496760Thermal correction to Gibbs Free Energy=0.414324Sum of electronic and zero-point Energies=-1239.814354

2b²⁺ CIS/6-31+G(d)

Geometry

С	0.493945	-0.381559	-0.073257	С	0.933844	0.954329	-0.090817	С	2.281569	1.270145	-0.060321
С	2.838738	-1.023163	0.044648	С	1.498097	-1.364416	-0.009900	С	-0.927423	-0.728781	-0.117807
С	-1.916880	0.143616	0.355656	С	-3.240642	-0.213183	0.299501	С	-2.707593	-2.244329	-0.668519
С	-1.371587	-1.956503	-0.640004	Н	0.229478	1.755251	-0.158340	Η	1.240012	-2.400899	0.026691
Η	-1.673603	1.086421	0.803681	Η	-4.014003	0.432616	0.662128	Η	-3.072924	-3.168299	-1.072334
Н	-0.693976	-2.672768	-1.060289	0	3.197750	0.279315	0.012042	С	3.939308	-1.932166	0.124752
С	3.745009	-3.328882	0.303193	С	5.267983	-1.444811	0.022993	С	4.816728	-4.176547	0.371016
Н	2.759429	-3.738957	0.405220	С	6.337357	-2.306804	0.086521	Η	5.440611	-0.397903	-0.120051
С	6.120225	-3.671620	0.260712	Η	4.662284	-5.229499	0.513542	Η	7.338673	-1.928638	0.000663
Н	6.956759	-4.344198	0.313083	С	2.842048	2.584984	-0.089569	С	2.036320	3.737739	-0.295644
С	4.237770	2.763102	0.093637	С	2.598841	4.984715	-0.312836	Η	0.979995	3.649247	-0.457720
С	4.791342	4.021691	0.080547	Η	4.864983	1.911402	0.259395	С	3.979899	5.135456	-0.122577
Η	1.984809	5.850202	-0.476439	Η	5.847669	4.146073	0.227908	Η	4.413859	6.118515	-0.135504
Ν	-3.630532	-1.387149	-0.207344	С	-5.081225	-1.814930	-0.214253	Η	-5.189177	-2.440201	-1.087969
Н	-5.219778	-2.426106	0.666584	С	-6.055819	-0.668887	-0.245356	С	-6.744335	-0.306519	0.906249
С	-6.302694	0.011069	-1.436345	С	-7.662596	0.734984	0.873891	Η	-6.582950	-0.841959	1.826428
С	-7.215346	1.051485	-1.468295	Н	-5.797089	-0.279408	-2.342036	С	-7.895072	1.414657	-0.311233
Н	-8.199195	1.002854	1.765345	Η	-7.409911	1.565841	-2.391414	Η	-8.611811	2.214750	-0.339628
Zer	o-point corr	ection=	0.47	71628	8 (Hartree/P	article)					
Thermal correction to Energy=				0.49	5072						

Thermal correction to Enthalpy=0.496016Thermal correction to Gibbs Free Energy=0.412527Sum of electronic and zero-point Energies=-1239.836341

Table. Computational Structural Parameters for Pyrylogen Radical Cations.									
	2b +.a	2b +.b	2c+ .a	2c+ .b					
E(a.u.)	-1248.70083745	-1249.03549791	-1245.51730424	-1245.86522090					
d ₁₂	1.366Å	1.363Å	1.365Å	1.362Å					
d ₁₆	1.366Å	1.363Å	1.365Å	1.362Å					
d _{44'}	1.435Å	1.432Å	1.435Å	1.431Å					
d _{1'2'}	1.369Å	1.364Å	1.371Å	1.366Å					
d _{1'6'}	1.367Å	1.362Å	1.370Å	1.366Å					
d _{2a}	1.464Å	1.463Å	1.464Å	1.463Å					
$d_{6a'}$	1.464Å	1.463Å	1.464Å	1.463Å					
>216	121.22°	120.99°	121.22°	121.01°					
>2'1'6'	118.64°	118.64°	118.77°	118.73°					
>344'3'	6.30°	3.45°	2.25°	4.00°					
>12ab	21.48°	22.90°	21.60°	22.76°					
>16a'b'	20.82°	22.43°	21.51°	23.00°					
>3'2'N7	176.77°	177.46°	177.66°	175.91°					

>1'789	67.54°	64.78°	16.32°	5.02°
>981011			1.11°	0.45°
>2'1'78	49.55°	53.08°	68.10°	92.65°
a. B3LYP/6-31G(d). b. B3LYP	/6-311+G(2d,p)			

2b+·B3LYP/6-31G(d)

С	-0.117072	0.205783	0.065255	С	0.441922	-0.927909	0.732469	С	1.585813	-0.829239	1.476330
С	1.764077	1.464828	0.985792	С	0.619906	1.419153	0.238884	С	-1.318835	0.132354	-0.716160
С	-1.940663	1.291931	-1.270763	С	-3.081835	1.204577	-2.019910	С	-3.129446	-1.157185	-1.725059
С	-1.975967	-1.105090	-0.991519	Н	-0.031447	-1.900036	0.684211	Η	2.009782	-1.680077	1.996151
Η	2.344629	2.370728	1.107336	Η	0.304849	2.340286	-0.234209	Η	-1.548961	2.281077	-1.079810
Η	-1.557483	-2.045170	-0.660918	С	3.470042	0.450461	2.477316	Η	3.177082	0.953802	3.404898
Η	3.742061	-0.577552	2.731226	С	-3.888047	-2.357344	-2.083698	С	-3.761238	-3.540548	-1.331552
С	-4.753993	-2.344009	-3.193299	С	-4.470839	-4.681818	-1.689590	Η	-3.132914	-3.561454	-0.446339
С	-5.460395	-3.490270	-3.546270	Н	-4.856589	-1.440856	-3.784413	С	-5.320614	-4.661684	-2.799033
Η	-4.370478	-5.585473	-1.096002	Н	-6.118765	-3.469997	-4.409526	С	-3.817041	2.314108	-2.630448
С	-3.175204	3.536325	-2.905363	С	-5.181076	2.172968	-2.947553	С	-3.883543	4.592150	-3.469067
Η	-2.113636	3.652173	-2.709237	С	-5.884019	3.234389	-3.510423	Η	-5.688304	1.238410	-2.735324
С	-5.240263	4.445992	-3.771127	Η	-3.374634	5.526827	-3.684483	Η	-6.938170	3.116533	-3.742657
Ν	2.259314	0.352571	1.611055	0	-3.668637	-0.010149	-2.234703	Η	-5.790888	5.271350	-4.212533
Η	-5.874634	-5.553725	-3.075739	С	4.620778	1.175515	1.818902	С	5.048444	2.412070	2.316002
С	5.280716	0.612258	0.717099	С	6.121975	3.079404	1.721413	Η	4.550813	2.849797	3.178672
С	6.348393	1.279948	0.121632	Н	4.962305	-0.351965	0.326975	С	6.770568	2.514893	0.623494
Η	6.450400	4.035081	2.118973	Η	6.857499	0.835043	-0.728265	Н	7.606954	3.031019	0.161436
Zer	o-point corre	ection=	0.4	41672	7 (Hartree/P	article)					
Thermal correction to Energy= 0.466416											
Thermal correction to Enthalpy= 0.467360											
Thermal correction to Gibbs Free Energy= 0.382											
Sun	Sum of electronic and zero-point Energies= -1248.259161										

2b+·B3LYP/6-311+G(2d,p)

С	-0.133434	0.223130	0.077078	С	0.454752	-0.914679	0.701231	С	1.591563	-0.810854	1.446346
С	1.703255	1.496264	1.042778	С	0.565601	1.446627	0.295927	С	-1.328465	0.144576	-0.707266
С	-1.947765	1.296875	-1.268477	С	-3.081079	1.204182	-2.018313	С	-3.122801	-1.148196	-1.718955
С	-1.980240	-1.091316	-0.979621	Н	0.015944	-1.896795	0.612048	Н	2.038668	-1.667378	1.930552
Н	2.251379	2.414026	1.199363	Н	0.221516	2.375245	-0.133525	Н	-1.555969	2.284997	-1.089776
Н	-1.570205	-2.026966	-0.635965	С	3.441778	0.479613	2.480774	Н	3.162278	1.001557	3.398148
Η	3.706466	-0.542363	2.752063	С	-3.868871	-2.353799	-2.079235	С	-3.762053	-3.521622	-1.309697
С	-4.696838	-2.361232	-3.211140	С	-4.454611	-4.666608	-1.670704	Н	-3.162336	-3.529334	-0.408296
С	-5.384656	-3.511797	-3.568774	Н	-4.786269	-1.470371	-3.817671	С	-5.265483	-4.667007	-2.802869
Η	-4.371393	-5.558365	-1.062134	Н	-6.013310	-3.507497	-4.450461	С	-3.813680	2.312500	-2.630410
С	-3.168837	3.522922	-2.923833	С	-5.178574	2.182129	-2.925005	С	-3.873591	4.576202	-3.484923
Η	-2.106957	3.633214	-2.743951	С	-5.878953	3.241694	-3.483237	Н	-5.690917	1.256737	-2.699762
С	-5.231234	4.440632	-3.763689	Н	-3.361536	5.501724	-3.716702	Н	-6.934743	3.132122	-3.697390
Ν	2.228728	0.379709	1.624737	0	-3.663232	-0.008604	-2.234569	Н	-5.779702	5.264770	-4.202671
Н	-5.805713	-5.562843	-3.082790	С	4.596986	1.178819	1.807249	С	5.082857	2.380569	2.320038
С	5.208009	0.619716	0.681982	С	6.163975	3.018429	1.717613	Н	4.624585	2.816805	3.201216
С	6.282450	1.258079	0.077804	Н	4.848300	-0.320429	0.277308	С	6.762238	2.459284	0.595347
Η	6.537537	3.948372	2.127986	Н	6.752996	0.815724	-0.791575	Н	7.604277	2.953068	0.126326
Zer	o-point corre	ection=	0.4	38799	9 (Hartree/P	'article)					
Thermal correction to Energy= 0.463571											
The	Thermal correction to Enthalpy= 0.464515										
The	ermal correct	tion to Gibbs	s Free Energy	y=	0.379401						
Sur	Sum of electronic and zero-point Energies= -1248.596699										

2c+·B3LYP/6-31G(d)

Geometric Parameters

C	-2 253264	0 512317	0 091147	C	-0.851375	0 406578	0 339898	C	-0.030112	1 499986	0 296004
C	-1.866430	2.891135	-0.298273	C	-2.719845	1.824364	-0.223772	C	-3.131429	-0.621397	0.153861
Č	-2.665673	-1.946625	0.422762	Č	-3.519319	-3.011336	0.480487	Č	-5.360220	-1.610016	0.018499
Ċ	-4.544129	-0.516808	-0.046329	H	-0.391565	-0.546216	0.559862	H	-3.767996	2.019229	-0.400392
Н	-1.616646	-2.151830	0.590702	Н	-3.179544	-4.015235	0.697932	Н	-6.431342	-1.540974	-0.127725
Н	-5.016160	0.435265	-0.250661	0	-0.538085	2.724549	-0.030510	С	-2.219971	4.274875	-0.621460
С	-3.394160	4.567273	-1.340872	С	-1.388291	5.334113	-0.212323	С	-3.732470	5.884912	-1.630112
Η	-4.027291	3.763629	-1.704618	С	-1.734097	6.650450	-0.504045	Н	-0.484068	5.122532	0.347398
С	-2.905497	6.930713	-1.210918	Н	-4.636069	6.096635	-2.193729	Н	-1.089255	7.459855	-0.175316
Н	-3.171077	7.958616	-1.439186	С	1.413018	1.521526	0.542597	С	2.026457	0.508375	1.303583
С	2.207967	2.557261	0.016848	С	3.400262	0.524968	1.519519	Н	1.426322	-0.275301	1.755989
С	3.582536	2.566235	0.235598	Н	1.747855	3.340738	-0.574953	С	4.183032	1.551733	0.984457
Н	3.860151	-0.257072	2.116070	Н	4.187071	3.365432	-0.182544	Н	5.255329	1.563208	1.155564
Ν	-4.865441	-2.863545	0.267579	С	-5.757741	-4.014910	0.387043	Н	-6.745296	-3.747809	0.007519
Н	-5.383031	-4.836137	-0.234214	С	-5.862307	-4.503750	1.839284	0	-5.085223	-4.199012	2.713386
0	-6.901926	-5.328353	1.954221	С	-7.096325	-5.931602	3.258755	Н	-6.210685	-6.504228	3.541230
Н	-7.285597	-5.155323	4.002808	Н	-7.962009	-6.581979	3.145662				
Zer	o-point corre	ection=	0.4	0330	7 (Hartree/P	article)					
The	ermal correct	tion to Ener	gy=	0.42	28082						
The	Thermal correction to Enthalpy= 0.429026										
Thermal correction to Gibbs Free Energy= 0.343013											
Sur	n of electron	ic and zero-	point Energi	es=	-1245.113	3997					

2c+·B3LYP/6-311+G(2d,p)

Geometric Parameters

C -2.211475 0.480335 0.080124 C -0.811434 0.391157 0.318730 C -0.009288 1.491759 0.280607

С	-1.862979	2.860097	-0.277829	С	-2.697430	1.784961	-0.214178	С	-3.070679	-0.663339	0.132925
С	-2.580282	-1.985161	0.346110	С	-3.416622	-3.056962	0.394436	С	-5.281715	-1.672517	0.036231
С	-4.485153	-0.571167	-0.022375	Η	-0.338488	-0.554083	0.529149	Н	-3.745785	1.966328	-0.386159
Η	-1.526435	-2.181935	0.470240	Η	-3.054896	-4.061145	0.562152	Η	-6.355610	-1.610834	-0.067370
Η	-4.974466	0.378105	-0.178357	0	-0.533259	2.711191	-0.024318	С	-2.243061	4.240375	-0.577162
С	-3.412757	4.521428	-1.298520	С	-1.443567	5.305913	-0.139012	С	-3.776011	5.832275	-1.564128
Η	-4.024866	3.715326	-1.682972	С	-1.815104	6.615781	-0.404970	Η	-0.541908	5.105703	0.423489
С	-2.980349	6.883762	-1.116317	Η	-4.675405	6.035442	-2.131830	Н	-1.194540	7.430320	-0.052927
Η	-3.265909	7.907160	-1.325615	С	1.434125	1.524435	0.514443	С	2.058876	0.524371	1.274127
С	2.216549	2.554868	-0.026328	С	3.429686	0.549935	1.476549	Η	1.470554	-0.257889	1.736957
С	3.588773	2.572084	0.176802	Η	1.749709	3.330379	-0.618120	С	4.199535	1.571600	0.926401
Η	3.898468	-0.221461	2.074585	Η	4.183908	3.367718	-0.253644	Н	5.270396	1.589950	1.086490
Ν	-4.765448	-2.922351	0.227966	С	-5.645544	-4.074862	0.375564	Η	-6.569612	-3.900140	-0.174299
Η	-5.172845	-4.954455	-0.063704	С	-5.967155	-4.360999	1.846321	0	-5.476683	-3.767926	2.769019
0	-6.846107	-5.355390	1.922813	С	-7.239690	-5.764574	3.259351	Η	-6.367468	-6.109224	3.811484
Η	-7.701097	-4.928010	3.780412	Η	-7.950417	-6.571287	3.110972				
Zer	o-point corre	ection=	0.4	0039	2 (Hartree/P	article)					
Thermal correction to Energy=				0.42	5227						
Thermal correction to Enthalpy=				0.4	26171						

Thermal correction to Enthalpy – 0.7 Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= 0.339983

-1245.464829

	2b ^{0a}	2b ^{0b}	$2c^{0}(R = H)^{a}$
E(a.u.)	-1248.87406284	-1249.22118095	-1245.69276860
d ₁₂	1.386Å	1.383Å	1.385Å
d ₁₆	1.386Å	1.383Å	1.385Å
d ₄₄ ′	1.390Å	1.385Å	1.389Å
d _{1'2'}	1.390Å	1.382Å	1.390Å
d _{1'6'}	1.387Å	1.384Å	1.390Å
d_{2a}	1.470Å	1.468Å	1.470Å
d _{6a} ,	1.470Å	1.468Å	1.470Å
>216	118.55°	118.54°	118.53°
>2'1'6'	117.22°	117.46°	117.30°
>344'3'	0.48°	0.03°	0.09°
>12ab	19.28°	19.57°	19.32°
>16a'b'	18.69°	18.21°	19.67°
>3'2'N7	172.4°	177.2°	172.7°
>1'789	46.53°	25.06°	2.37°
>981011			0.15°
>2'1'78	60.86°	75.09°	83.09°

Table. Computational Parameters for Two Electron Reduced Pyrylogens.

a. B3LYP/6-31G(d). b. B3LYP/6-311+G(2d,p)

2b⁰ B3LYP/6-31G(d)

Geometric Coordinates

С	-0.166826	0.254160	0.105674	С	0.476363	-0.890926	0.733782	С	1.596554	-0.775053	1.485000
С	1.643810	1.569221	1.139816	С	0.522797	1.505363	0.384541	С	-1.314730	0.163969	-0.672415
С	-1.959893	1.309139	-1.285832	С	-3.074271	1.201808	-2.045336	С	-3.123909	-1.154206	-1.696636
С	-1.993498	-1.086096	-0.956399	Н	0.066194	-1.886599	0.614406	Н	2.067454	-1.631984	1.954781
Н	2.159492	2.502179	1.336331	Η	0.149799	2.439080	-0.019337	Н	-1.565276	2.304540	-1.128179

Н	-1.586342	-2.019993	-0.591252	С	3.337900	0.573540	2.640087	Η	3.009684	1.119847	3.536583
Н	3.593497	-0.439797	2.970141	С	-3.869039	-2.372746	-2.042712	С	-3.727152	-3.558349	-1.296560
С	-4.751100	-2.379414	-3.139394	С	-4.421163	-4.711392	-1.649607	Н	-3.088298	-3.570320	-0.418641
С	-5.447797	-3.535622	-3.486177	Н	-4.874347	-1.474762	-3.723761	С	-5.285838	-4.708579	-2.747930
Н	-4.297536	-5.613432	-1.055784	Н	-6.119164	-3.518735	-4.340996	С	-3.796928	2.304431	-2.694685
С	-3.171298	3.538015	-2.957496	С	-5.143566	2.148165	-3.072443	С	-3.873260	4.582189	-3.551480
Н	-2.120568	3.671411	-2.718275	С	-5.841190	3.195510	-3.671523	Н	-5.640115	1.204038	-2.879500
С	-5.213864	4.418668	-3.911772	Н	-3.367246	5.523996	-3.747758	Η	-6.882576	3.053975	-3.949387
Ν	2.229041	0.440291	1.699964	0	-3.690068	-0.021090	-2.258114	Η	-5.758607	5.233111	-4.381551
Н	-5.831813	-5.608360	-3.018221	С	4.566500	1.253464	2.058150	С	5.236385	2.237706	2.791974
С	5.068151	0.883245	0.803324	С	6.394253	2.836424	2.290233	Н	4.849864	2.538219	3.763737
С	6.220705	1.482886	0.298370	Н	4.545825	0.130805	0.218256	С	6.888692	2.459935	1.041662
Н	6.902733	3.600663	2.871897	Н	6.598446	1.188379	-0.677111	Η	7.786226	2.927524	0.646037
Zer	o-point corre	ection=	0.4	3922	1 (Hartree/P	article)					
The	rmal correct	tion to Ener	gy=	0.46	4346						
The	Thermal correction to Enthalpy= 0.465290										
The	rmal correct	tion to Gibbs	s Free Energ	y=	0.379037						
Sun	um of electronic and zero-point Energies= -1248.434842										

2b^o B3LYP/6-311+G(2d,p)

Geometric Coordinates

С	-0.278995	0.473035	0.286551	С	0.411397	-0.636489	0.920548	С	1.485649	-0.459154	1.718040
С	1.378761	1.884563	1.423265	С	0.301845	1.761589	0.620689	С	-1.374535	0.319678	-0.546490
С	-2.056938	1.426764	-1.179216	С	-3.111950	1.258878	-2.000239	С	-3.022158	-1.095732	-1.684219
С	-1.951414	-0.964943	-0.877127	Η	0.076739	-1.652637	0.771110	Н	1.995878	-1.290460	2.185744
Н	1.811519	2.846798	1.661126	Н	-0.122663	2.674926	0.230027	Н	-1.738282	2.440300	-0.991486
Н	-1.513690	-1.872973	-0.492228	С	3.196814	0.962209	2.808845	Н	3.020520	1.766098	3.530455
Н	3.324180	0.048116	3.395000	С	-3.658532	-2.356232	-2.085790	С	-3.493514	-3.531686	-1.337138

С	-4.450884	-2.415052	-3.241498	С	-4.077142	-4.722166	-1.742607	Η	-2.923249	-3.509910	-0.417095
Н	-5.035906	-3.609899	-3.642964	Н	-4.594608	-1.519581	-3.830030	С	-4.851104	-4.770335	-2.900294
Н	-3.939216	-5.615581	-1.144810	Н	-5.638839	-3.632357	-4.543347	С	-3.866006	2.322111	-2.675603
С	-3.322239	3.603303	-2.857132	С	-5.160136	2.079969	-3.158813	С	-4.052453	4.606521	-3.475121
Н	-2.310352	3.811396	-2.533378	С	-5.887679	3.087976	-3.780254	Η	-5.596355	1.098816	-3.033139
С	-5.342096	4.356472	-3.939814	Н	-3.608328	5.586160	-3.607949	Η	-6.888459	2.878826	-4.139988
Ν	2.004265	0.791331	1.997449	0	-3.625417	0.002886	-2.268200	Н	-5.909247	5.140178	-4.427498
Н	-5.310600	-5.700459	-3.212409	С	4.474214	1.254029	2.036214	С	5.528774	1.900423	2.682656
С	4.636727	0.861131	0.708934	С	6.727619	2.139860	2.021150	Н	5.410977	2.222363	3.712559
С	5.835162	1.103646	0.043919	Н	3.822695	0.372329	0.187654	С	6.884300	1.740413	0.697441
Η	7.536239	2.644631	2.536537	Н	5.946245	0.795816	-0.989061	Н	7.815550	1.930551	0.177507
Zero	o-point corre	ection=	0.4	36390) (Hartree/Pa	article)					
The	rmal correct	tion to Ener	gy=	0.46	1548						
The	Thermal correction to Enthalpy= 0.462492										
The	rmal correct	tion to Gibbs	s Free Energ	y=	0.376039						
Sun	um of electronic and zero-point Energies= -1248.784791										

2c⁰ B3LYP/6-31G(d)

Geometric Coordinates

С	-2.197154	0.429385	0.093993	С	-0.764617	0.383595	0.317827	С	0.018440	1.486115	0.278285
С	-1.862683	2.841642	-0.263298	С	-2.680207	1.765843	-0.196968	С	-3.019033	-0.689150	0.149496
С	-2.536541	-2.031815	0.440012	С	-3.353489	-3.108458	0.470983	С	-5.234384	-1.750545	-0.033435
С	-4.456914	-0.645435	-0.075532	Н	-0.274233	-0.562074	0.508548	Н	-3.736631	1.940267	-0.354400
Η	-1.487233	-2.206097	0.645566	Н	-2.990412	-4.105680	0.694236	Η	-6.305792	-1.712343	-0.197575
Η	-4.951616	0.294941	-0.286704	0	-0.503819	2.734451	-0.017457	С	-2.265129	4.225658	-0.550965
С	-3.470483	4.515338	-1.218219	С	-1.443842	5.300806	-0.164050	С	-3.850549	5.830696	-1.466104
Н	-4.101386	3.703792	-1.568293	С	-1.826647	6.616506	-0.418657	Η	-0.511073	5.095416	0.348735
С	-3.031503	6.890755	-1.067062	Η	-4.783920	6.029218	-1.986646	Η	-1.179278	7.431598	-0.105263

-3.326821 7.917103 -1.267416 1.472155 1.530911 0.490112 2.144419 0.504259 1.180177 Η Η С 3.524161 0.546542 1.354600 С 2.229508 2.613019 0.004591 С 1.579006 -0.319584 1.605335 Η С 3.610817 2.653183 0.185982 Η 1.727038 3.413701 -0.526118 С 4.267302 1.621038 0.857559 Η 4.020412 -0.255915 1.894355 Η 4.176574 3.496091 -0.202755 5.343907 1.655704 1.000642 Η -4.713846 -3.018037 0.200282 С -5.582706 -4.149726 0.393489 -6.462881 -4.058801 -0.252649 Ν Η -5.071503 -5.069880 0.087198 -6.060474 -4.326433 1.840894 -5.735851 -3.638629 2.778077 Н С 0 0 -6.901388 -5.378937 1.911836 С -7.422666 -5.667046 3.223176 Н -6.608707 -5.898352 3.914981 Н Η -8.075487 -6.530459 3.094618 -7.984702 -4.811671 3.606456 Zero-point correction= 0.400977 (Hartree/Particle) Thermal correction to Energy= 0.426065 Thermal correction to Enthalpy= 0.427009 Thermal correction to Gibbs Free Energy= 0.340994 Sum of electronic and zero-point Energies= -1245.291791

2b²⁺ February 5, 2009

Crystallographic Data. The X-ray diffraction data were measured at 150 K on a Bruker SMART APEX II CCD area detector system equipped with a graphite monochromator and a Mo K α fine-focus sealed tube operated at 1.50 kW power (50 kV, 30 mA). A yellow trigonal prismatic crystal of [BzPyPh₂OPy](BF₄)₂ approximate dimensions 0.47 mm × 0.35 mm × 0.26 mm glued to a Hampton Research cryoloop using Paratone N oil. The detector was placed at a distance of 6.12 cm from the crystal during the data collection.

A series of narrow frames of data were collected with a scan width of 0.5° in ω or ϕ and an exposure time of 10 s per frame. The frames were integrated with the Bruker SAINT Software package¹ using a narrow-frame integration algorithm. The integration of the data using a monoclinic unit cell yielded a total of 18821 reflections in the 2 θ range of 3.34 – 57.40° of which 7425 were independent with $I \ge 2\sigma(I)$ (R_{int}= 0.0261). The data were corrected for absorption effects by the multi-scan method (SADABS). The compound crystallizes in a centro-symmetric monoclinic space group, namely, *C2/c*. Crystallographic data collection parameters and refinement data are collected in Table 1. The structure was solved by direct methods using the Bruker Software Package.¹ The non-hydrogen atoms were located in successive Fourier maps and refined anisotropically. All hydrogen atoms were also located, and refined isotropically. The final refinement parameters are $R_1 = 0.0549$ and wR2 = 0.1488 for data with $F > 4\sigma(F)$ giving the data to parameter ratio of 14.8. The refinement data for all data are $R_1 = 0.0696$ and wR2 = 0.1612.

The asymmetric unit consists of $2b^{2+}$, two tetrafluoroborate anions and a solvated acetonitrile molecule. The contents of the unit cell are well ordered. Both borates appear to interact with the oxopyrilium cation. One of the borate is located close to the oxopyrilium oxygen atom with the associated F···O distance being 2.933(2) Å, whereas the other is located close to an oxopyrilium C-H group with the associated F···C distance being 2.946(2) Å. The dication is non-planar as the oxopyrilium and pyridinium rings are twisted at 33.94(7)°. The two phenyl rings also deviate from the mean plane of the oxopyrilium ring. But the angles are comparatively smaller at 10.32(8) and 14.79(7)°.

Acknowledgment. Financial support by the NSF (CHE 0619920) for the purchase of the Bruker Apex II Diffractometer is gratefully acknowledged. **Reference**

1. APEX2 Software Suite V. 2.2, Bruker AXS Inc.: Madison, WI, 2007.

Table I. Crystallograf	Dric Data for [BZPyPh ₂ C	JPy](BF4J2	
compound	[BzPyPh ₂ OPy](BF ₄) ₂	chemical formula	$C_{31}H_{26}B_2F_8N_2O$
fw	616.16	Т, К	150(2)
λ, Å	0.71073	space group	С2/с
a, Å	30.0651(5)	b, Å	13.6116(2)
<i>c</i> , Å	15.4512(2)	β, °	114.351(1)
<i>V</i> , Å ³	5760.63(15)	Ζ	8
$D_{ m calc}$, Mg m ⁻³	1.421	μ , mm ⁻¹	0.121
$R1[I > 2\sigma(I)]^a$	0.0549	wR2[I > $2\sigma(I)$]b	1488
$aR1 = \sum F_0 - F_c /\sum$	$\sum F_o ; b_w R2 = \{\sum [w(F_o^2 - $	$F_{c^{2}}^{2}/\Sigma w(F_{o^{2}})^{2}]^{1/2}$	2

Table 1. Crystallographic Data for [BzPyPh₂OPy](BF₄)₂

Fig. 1. View of the contents of the unit cell in the crystals of [BzPyPh₂OPy](BF₄)₂. Hydrogen atoms are omitted for clarity. The thermal ellipsoids are drawn at the 50% probability.

Fig. 2. View of the [BzPyPh₂OPy]²⁺ cation. Hydrogen atoms are omitted and the thermal ellipsoids are drawn at the 50% probability.

Table 1. Crystal data and structure refinement for 2	b ²⁺ .	
Identification code	tt01	
Empirical formula	C31 H26 B2 F8 N2 O	
Formula weight	616.16	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	a = 30.0651(5) Å	α= 90°.
	b = 13.6116(2) Å	$\beta = 114.351(1)^{\circ}$.
	c = 15.4512(2) Å	$\gamma = 90^{\circ}$.
Volume	5760.63(15) Å ³	•
Z	8	
Density (calculated)	1.421 Mg/m ³	
Absorption coefficient	0.121 mm ⁻¹	
F(000)	2528	
Crystal size	0.47 x 0.35 x 0.26 mm ³	
Theta range for data collection	1.67 to 28.70°.	
Index ranges	-40<=h<=40, -18<=k<=13, -17	<=l<=20
Reflections collected	18821	
Independent reflections	7425 [R(int) = 0.0261]	
Completeness to theta = 28.70°	99.5 %	
Absorption correction	Semi-empirical from equivalen	ts
Max. and min. transmission	0.9696 and 0.9450	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	7425 / 0 / 501	
Goodness-of-fit on F ²	1.035	
Final R indices [I>2sigma(I)]	R1 = 0.0549, wR2 = 0.1488	
R indices (all data)	R1 = 0.0696, $wR2 = 0.1612$	
Largest diff. peak and hole	1.078 and -0.550 e.Å ⁻³	

Table 2. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for tt01. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)
O(1)	367(1)	3840(1)	4292(1)	21(1)
C(1)	606(1)	4682(1)	4648(1)	21(1)
C(2)	1092(1)	4645(1)	5269(1)	22(1)
C(3)	1330(1)	3741(1)	5472(1)	21(1)
C(4)	1072(1)	2888(1)	5063(1)	22(1)
C(5)	584(1)	2953(1)	4484(1)	21(1)
C(6)	1855(1)	3663(1)	6121(1)	20(1)
C(7)	2068(1)	4290(1)	6898(1)	24(1)
C(8)	2551(1)	4166(1)	7501(1)	25(1)
N(1)	2818(1)	3449(1)	7344(1)	21(1)
C(9)	2623(1)	2843(1)	6594(1)	23(1)
C(10)	2141(1)	2938(1)	5969(1)	22(1)
C(11)	303(1)	5556(1)	4306(1)	22(1)
C(12)	-163(1)	5486(1)	3564(1)	33(1)
C(13)	-447(1)	6319(2)	3240(2)	39(1)
C(14)	-272(1)	7222(1)	3642(2)	34(1)
× /				()

C(15)	187(1)	7299(1)	4384(2)	32(1)
C(16)	474(1)	6470(1)	4719(1)	28(1)
C(17)	255(1)	2134(1)	4042(1)	23(1)
C(18)	402(1)	1176(1)	4360(2)	32(1)
C(19)	89(1)	398(2)	3952(2)	41(1)
C(20)	-367(1)	564(2)	3222(2)	39(1)
C(21)	-512(1)	1509(2)	2899(1)	32(1)
C(22)	-206(1)	2298(1)	3311(1)	26(1)
C(23)	3345(1)	3348(1)	8004(1)	26(1)
C(24)	3414(1)	3127(1)	9005(1)	24(1)
C(25)	3707(1)	3740(2)	9742(1)	33(1)
C(26)	3789(1)	3517(2)	10671(2)	44(1)
C(27)	3582(1)	2697(2)	10870(2)	47(1)
C(28)	3287(1)	2091(2)	10143(2)	45(1)
C(29)	3201(1)	2302(2)	9208(2)	34(1)
F(1)	914(1)	4062(1)	3112(1)	39(1)
B(1)	1374(1)	4235(2)	3140(1)	26(1)
F(2)	1384(1)	3958(1)	2278(1)	45(1)
F(3)	1721(1)	3692(1)	3874(1)	41(1)
F(4)	1491(1)	5220(1)	3296(1)	48(1)
B(2)	1677(1)	1244(2)	7141(2)	29(1)
F(5)	1655(1)	905(1)	6282(1)	54(1)
F(6)	1445(1)	2137(1)	7024(1)	61(1)
F(7)	1491(1)	566(1)	7562(1)	67(1)
F(8)	2162(1)	1387(2)	7729(1)	74(1)
N(2)	1626(1)	-1148(1)	9183(1)	43(1)
C(30)	1914(1)	-552(2)	9463(1)	34(1)
C(31)	2292(1)	197(2)	9810(2)	44(1)

2c²⁺ (20i) February 19, 2009

Crystallographic Data. The X-ray diffraction data were measured at 150 K on a Bruker SMART APEX II CCD area detector system equipped with a graphite monochromator and a Mo K α fine-focus sealed tube operated at 1.50 kW power (50 kV, 30 mA). A yellow rectangular prismatic crystal of 20i approximate dimensions 0.34 mm × 0.31 mm × 0.14 mm glued to a MiTeGen micromount using Paratone N oil. The detector was placed at a distance of 5.12 cm from the crystal during the data collection.

A series of narrow frames of data were collected with a scan width of 0.5° in ω or ϕ and an exposure time of 10 s per frame. The frames were integrated with the Bruker SAINT Software package¹ using a narrow-frame integration algorithm. The integration of the data using a triclinic unit cell yielded a total of 16479 reflections in the 20 range of $4.70 - 57.40^{\circ}$ of which 8187 were independent with $I \ge 2\sigma(I)$ (R_{int}= 0.0294). The data were corrected for absorption effects by the multi-scan method (SADABS).¹ The compound crystallizes in the centro-symmetric triclinic space group P_{1} . Crystallographic data collection parameters and refinement data are collected in Table 1. The structure was solved by direct methods using the Bruker Software Package.¹ The non-hydrogen atoms were located in successive Fourier maps and refined anisotropically. The asymmetric unit consists of a pyrilogen dication, two tetrafluoroborate anions and two solvated acetic acid molecules (Figure 1). The hydrogen atoms of the carboxylate ethyl group belonging to the cation were placed in calculated positions and refined isotropically by adopting a riding model. The rest of the hydrogen

atoms of the cation were located in the Fourier maps and refined isotropically. The carboxylic acid hydrogen atoms of the acetic acid molecules was located and refined isotropically with fixed positional and thermal parameters, whereas their methyl hydrogen atoms were placed in calculated positions and refined isotropically by adopting a riding model.

The cation (Figure 2) is non-planar as the oxopyrilium and pyridinium rings are twisted at $39.99(9)^\circ$. But the two phenyl rings are nearly coplanar with the oxopyrilium ring with the angles between the respective phenyl mean planes and the oxopyrilium ring's mean plane being at $3.97(13)^\circ$ and $3.80(13)^\circ$. The cation and one of the anions exhibit weak interionic interaction with the associated N1…F3A inter-atomic distance of 2.901(3) Å. The other borate ion is well separated from the cation. Consequently, both of the borates are disordered. The disorder in one of the borate is modeled by assigning two sets of positions for three of its fluorine atoms, and that in the other borate is modeled by assigning two sets of positions for all of its fluorine atoms. The two acetic acid molecules are reasonably well ordered as they are hydrogen bonded to each other. The final refinement parameters are $R_1 = 0.0603$ and wR2 = 0.1586 for the data with $F > 4\sigma(F)$ giving the data to parameter ratio of 14. The refinement data for all data are $R_1 = 0.1088$ and wR2 = 0.1876.

Acknowledgment. Financial support by the NSF (CHE 0619920) for the purchase of the Bruker Apex II Diffractometer is gratefully acknowledged.

Reference

1. APEX2 Software Suite V. 2.2, Bruker AXS Inc.: Madison, WI, 2007.

Table 1. Crystallogra	phic Data for <mark>20</mark> i		
Compound	20i	chemical formula	$C_{30}H_{31}B_2F_8NO_7$
fw	691.18	Т, К	150(2)
λ, Å	0.71073	space group	$P\bar{1}$
<i>a</i> , Å	8.7453(2)	b, Å	14.2435(3)
<i>c</i> , Å	14.7221(3)	α, °	118.767(1)
β, °	91.692(1)	γ, °	95.485(1)
<i>V</i> , Å ³	1594.15(6)	Z	2
$D_{ m calc}$, Mg m ⁻³	1.440	μ , mm ⁻¹	0.130
$R1[I > 2\sigma(I)]^a$	0.0603	wR2[I > $2\sigma(I)$]b	0.1586
$aR1 = \sum F_0 - F_c /\sum$	$\sum F_o ; b_w R2 = \{\sum [w(F_o^2 - $	$F_{c^{2}}^{2} / \sum w(F_{o^{2}})^{2}]^{1/2}$	2

Figure 1. View of the contents of the unit cell in the crystals of 20i. The second set of atoms of the two disordered borate anions is omitted, and all hydrogen atoms except for those involved in hydrogen bonding are omitted for clarity. The thermal ellipsoids are drawn at the 50% probability.

Figure 2. View of the cation in the crystals of 20i. Hydrogen atoms are omitted and the

thermal ellipsoids are drawn at the 50% probability.

Table 1. Crystal data and structure refinement for 20i.

Identification code	tt03a	
Empirical formula	C30 H31 B2 F8 N O7	
Formula weight	691.18	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 8.7453(2) Å	$\alpha = 118.767(1)^{\circ}$
	b = 14.2435(3) Å	$\beta = 91.692(1)^{\circ}$.
	c = 14.7221(3) Å	$\gamma = 95.485(1)^{\circ}$.
Volume	1594.15(6) Å ³	• ()
Ζ	2	
Density (calculated)	1.440 Mg/m ³	
Absorption coefficient	0.130 mm ⁻¹	
F(000)	712	
Crystal size	$0.34 \times 0.31 \times 0.14 \text{ mm}^3$	
Theta range for data collection	2.35 to 28.70°.	
Index ranges	-11<=h<=11, -14<=k<=1	9, -19<=l<=19
Reflections collected	16479	
Independent reflections	8187 [R(int) = 0.0294]	
Completeness to theta = 28.70°	99.5 %	
Absorption correction	Semi-empirical from equ	ivalents
Max. and min. transmission	0.9825 and 0.9575	
Refinement method	Full-matrix least-squares	on F ²

Data / restraints / parameters	8187 / 0 / 569
Goodness-of-fit on F ²	1.036
Final R indices [I>2sigma(I)]	R1 = 0.0603, $wR2 = 0.1586$
R indices (all data)	R1 = 0.1088, $wR2 = 0.1876$
Largest diff. peak and hole	0.423 and -0.378 e.Å ⁻³

Table 2. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³)

for 20i. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)
<u>O(1)</u>	7908(2)	942(1)	550(1)	32(1)
C(1)	8833(2)	1705(2)	1378(2)	30(1)
C(2)	8838(2)	2770(2)	1633(2)	33(1)
C(3)	7915(2)	3032(2)	1024(2)	31(1)
C(4)	6974(2)	2219(2)	182(2)	33(1)
C(5)	6978(2)	1165(2)	-46(2)	30(1)
C(6)	7917(2)	4170(2)	1261(2)	32(1)
C(7)	9268(3)	4877(2)	1572(2)	39(1)
C(8)	9214(3)	5925(2)	1793(2)	42(1)
N(1)	7859(2)	6271(1)	1723(1)	36(1)
C(9)	6537(3)	5600(2)	1410(2)	42(1)
C(10)	6544(3)	4540(2)	1161(2)	40(1)
C(23)	7836(3)	7425(2)	2062(2)	42(1)
C(24)	7762(3)	8049(2)	3222(2)	42(1)
O(2)	7761(3)	7659(2)	3782(1)	62(1)
O(3)	7746(2)	9083(1)	3517(1)	53(1)
C(25)	7610(5)	9797(2)	4621(2)	81(1)
C(26)	8056(7)	10912(3)	4858(3)	126(2)
C(11)	9745(2)	1260(2)	1890(2)	32(1)
C(12)	9658(3)	143(2)	1487(2)	35(1)
C(13)	10546(3)	-271(2)	1970(2)	39(1)
C(14)	11496(3)	411(2)	2853(2)	41(1)
C(15)	11576(3)	1517(2)	3263(2)	45(1)
C(16)	10704(3)	1943(2)	2784(2)	41(1)
C(17)	6072(2)	220(2)	-893(2)	33(1)
C(18)	5012(3)	346(2)	-1537(2)	41(1)
C(19)	4171(3)	-548(2)	-2350(2)	49(1)
C(20)	4368(3)	-1569(2)	-2538(2)	48(1)
C(21)	5407(3)	-1705(2)	-1903(2)	44(1)
C(22)	6262(3)	-825(2)	-1078(2)	37(1)
B(1)	7660(3)	6893(2)	-508(2)	39(1)
F(1)	7664(2)	6520(2)	-1555(1)	71(1)
F(2)	7199(4)	5963(2)	-428(2)	72(1)
F(3)	9040(3)	7331(3)	13(2)	75(2)
F(4)	6521(6)	7538(4)	-102(4)	75(1)
F(2A)	8552(12)	7921(6)	-247(8)	100(4)
F(3A)	8610(13)	6453(9)	-97(6)	97(5)
F(4A)	6428(10)	7145(12)	-2(8)	75(4)
B(2)	3214(3)	7502(3)	2360(3)	52(1)
F(5)	2709(10)	6754(7)	2636(8)	77(2)
F(6)	4080(9)	7144(6)	1550(7)	77(2)

F(7)	1972(10)	7902(6)	2264(7)	79(2)	
F(8)	4324(6)	8210(6)	3069(5)	140(2)	
F(5A)	3030(30)	6839(15)	2793(17)	70(5)	
F(6A)	3650(30)	6797(19)	1301(16)	98(7)	
F(7A)	1830(20)	7673(16)	1890(19)	93(7)	
F(8A)	3742(15)	8624(6)	3103(9)	83(3)	
C(27)	4844(4)	5907(3)	3795(3)	80(1)	
C(28)	5988(3)	5446(3)	4170(3)	64(1)	
O(4)	6508(3)	4595(2)	3537(2)	72(1)	
O(5)	6425(3)	5940(2)	5142(2)	73(1)	
C(29)	9683(4)	3667(3)	5648(2)	65(1)	
C(30)	8757(3)	4209(2)	5235(2)	53(1)	
O(6)	8566(2)	5187(2)	5821(2)	67(1)	
O(7)	8153(2)	3664(2)	4309(1)	63(1)	