Supporting information

for

Photoinduced decarboxylation of 3-(*N*phthalimido)adamantane-1-carboxylic acid and radical addition to electron deficient alkenes

By

Margareta Horvat,^a Kata Mlinarić-Majerski,^a Axel G. Griesbeck,^b and Nikola Basarić,^{*a}

^a Department of Organic Chemistry and Biochemistry, Bijenička cesta 54, 10 000 Zagreb, Croatia. Fax: + 385 1 4680 195; Tel: +385 1 4561 141; <u>nbasaric@irb.hr</u>

^b Department of Chemistry, University of Cologne, Greinstr. 4, Cologne D-50939, Germany.

Table of content:

1. Experimental procedure	S 3
2. Stern-Volmer quenching plot for the quenching of 1 with ethyl vinyl ether	S10
3. ¹ H NMR (DMSO- <i>d</i> ₆ , 600 MHz) of 1	S11
4. 13 C NMR (DMSO- <i>d</i> ₆ , 75 MHz) of 1	S12
5. ¹ H NMR (CDCl ₃ , 600 MHz) of 3a	S13
6. ¹³ C NMR (CDCl ₃ , 75 MHz) of 3a	S14
7. ¹ H NMR (CDCl ₃ , 600 MHz) of 3a-D	S15
8. ¹³ C NMR (CDCl ₃ , 150 MHz) of 3a-D	S16
9. ¹ H NMR (CDCl ₃ , 600 MHz) of 3b	S17
10. ¹³ C NMR (CDCl ₃ , 150 MHz) of 3b	S18
11. ¹ H NMR (CDCl ₃ , 300 MHz) of 3c	S19
12. 13 C NMR (CDCl ₃ , 75 MHz) of 3c	S20
13. ¹ H NMR (CDCl ₃ , 300 MHz) of 3d	S21
14. ¹³ C NMR (CDCl ₃ , 150 MHz) of 3d	S22
15. ¹ H NMR (CDCl ₃ , 300 MHz) of 5	S23
16. ¹³ C NMR (CDCl ₃ , 75 MHz) of 5	S24
17. ¹ H NMR (CDCl ₃ , 300 MHz) of 6	S25
18. ¹³ C NMR (CDCl ₃ , 75 MHz) of 6	S26
19. ¹ H NMR (DMSO- <i>d</i> ₆ , 300 MHz) of 7	S27
20. ¹³ C NMR (DMSO- <i>d</i> ₆ , 150 MHz) of 7	S28
21. ¹ H NMR (CDCl ₃ , 300 MHz) of D-2	S29

1. Experimental procedure

General: ¹H and ¹³C NMR spectra were recorded on a spectrometer at 300 or 600 MHz, respectively. All NMR spectra were measured in CDCl₃ or d_6 -DMSO using tetramethylsilane as a reference. For the assignation of the signals 2D homonuclear COSY and NOESY, and heteronuclear HSQC and HMBC correlation techniques were used. Melting points were uncorrected. Mass spectra and HRMS were obtained using MALDI-TOF technique. The laser wavelength was 337 nm (N₂ laser) and laser frequency amounted to 20 Hz. Calibrant and analyte spectra were obtained in positive ion mode. Internal calibration and elemental analysis were performed with software Data Explorer v. 4.0. The purity of samples were analyzed on a HPLC equipped with a diode array detector on a C18 column using CH₃OH/H₂O (20%) as a solvent. Silica gel was used for chromatographic purifications. Solvents were purified by distillation. The chemicals for synthesis were obtained from usual commercial sources.

3-(N-phthalimido)adamantane-1-carboxylic acid (1) A flask was charged with 3aminoadamantane-1-carboxylic acid (1.40 g, 7.17 mmol), phthalic anhydride (2.12 g, 14.34 mmol) and DMF (3 mL) and refluxed over 2 days. After evaporation of DMF, the crude product was dissolved in CH_2Cl_2 (50 mL), washed with 0.2 M HCl (3 × 20 mL) and dried over anhydrous MgSO₄. The pure product **1** was isolated in 53% yield after column chromatography on sillica gel with EtOAc/CH₃OH/CH₂Cl₂ (0.5:0.95:8.55) as eluent and recrystallization from benzene/CH₂Cl₂ (5:1).

colorless crystals, mp 186-188 °C; ¹H NMR (DMSO-*d*₆, 600 MHz) δ /ppm 12.20 (br s, 1H, COOH), 7.81-7.79 (m, 2H), 7.78-7.76 (m, 2H), 2.41 (m, 4H), 2.21 (br s, 2H), 1.80 (d, 2H, *J* = 12.1 Hz), 1.77 (d, 2H, *J* = 12.1 Hz), 1.78 (d, 1H, *J* = 12.3 Hz), 1.67 (d, 1H, *J* = 12.3 Hz), one signal is covered by the signal of DMSO; ¹³C NMR (DMSO-*d*₆, 75 MHz) δ /ppm 177.4 (s, COO), 169.1 (s, C=O), 134.4 (d, 2C), 131.2 (s, 2C), 122.5 (d, 2C), 59.4 (s), 41.8 (s), 40.7 (t), 38.8 (t, 2C), 37.4 (t, 2C), 34.7 (t), 28. 8 (d, 2C); IR (KBr) ν_{max}/cm^{-1} 3448.5, 2915.2, 2859.3, 1770.0, 1707.3, 1366.3, 1346, 1315.5, 1076.9; HRMS calcd for C₁₉H₁₉NO₄+H⁺ 326.1387; obsd 326.1371.

Photochemistry of 3-(*N*-phthalimido)adamantane-1-carboxylic acid (1) in the presence of alkenes and arenes, general procedure: A solution of 3-(*N*-phthalimido)adamantane carboxylic acid (1) (100 mg, 0.307 mmol), K_2CO_3 (21 mg, 0.1535 mmol) and alkene or arene 4 (3.070 mmol) in 200 mL acetone-H₂O (3:1) was irradiated in a Rayonet reactor (8 lamps) over 2 h at 300 nm and continuously purged with argon and cooled with an internal cold finger condenser (tap water). After irradiation, most of the acetone was removed on a rotary evaporator and the residue extracted with CH₂Cl₂ (3×50 mL). After the extraction, aqueous phase was acidified to pH 3 by addition of HCl (0.1 M), and extraction with EtOAc was carried out (3×50 mL). Organic extracts were dried over anhydrous MgSO₄. After filtration and evaporation of the solvent photochemical products were obtained from the CH₂Cl₂ solution, whereas unreacted 1 was recovered from EtOAc. The ratio of the photoproducts 2 and 3 was determined by NMR.

Alternatively, after irradiation, the solvent (acetone and H_2O) was removed on a rotrary evaporator and the residue chromatographed on a column filled with silica gel using 0-10 % MeOH/CH₂Cl₂ as eluent. Pure photochemical products **3a-3d** were obtained by preparative TLC using CH₂Cl₂/Et₂O (9:1), or CH₂Cl₂-EtOAC-CH₃OH (8.5:1:0.5).

3-(N-phthalimido)-1-(2-cyanoethyl)adamantane (3a)

92 mg (89%); yellowish oil; ¹H NMR (CDCl₃, 600 MHz) δ /ppm 7.76-7.73 (m, 2H, H-b), 7.69-7.66 (m, 2H, H-a), 2.47 (d, 2H, J = 11.7 Hz, H-8 and H-9), 2.44 (d, 2H, J = 11.7 Hz, H-8 and H-9) 2.35-2.31 (m, 2H, H-B), 2.27-2.25 (m, 2H, H-5 and H-7), 2.24 (s, 2H, H-2), 1.79-1.74 (m, 1H, H-6), 1.63-1.58 (m, 3H, H-6, 2H-A), 1.56 (dd, 2H, J = 1.2 Hz, J = 12.2 Hz, H-4 and H-10), 1.49 (dd, 2H, J = 1.2 Hz, J = 12.2 Hz, H-4 and H-10), 1.49 (dd, 2H, J = 1.2 Hz, J = 12.2 Hz, H-4 and H-10); ¹³C NMR (CDCl₃, 75 MHz) δ /ppm 169.5 (s, 2C, C=O), 133.6 (d, C-b), 131.7 (s, 2C, C-x), 122.4 (d, 2C, C-a), 120.3 (s, CN), 60.3 (s, C-1), 43.8 (t, C-2), 40.1 (t, 2C, C-4 and C-10), 39.2 (t, 2C, C-8 and C-9), 38.6 (t, C-A), 35.2 (t, C-6), 34.3 (s, C-3), 29.4 (d, 2C, C-5 and C-7), 11.0 (t, C-B); IR (KBr) ν_{max}/cm^{-1} 3457.6, 2911.5, 2852.9, 2245.4, 1769.1, 1706, 1368.8, 1314.4, 1078.6, 718.8; HRMS, calcd for C₂₁H₂₂N₂O₂+H⁺ 335.1749; obsd 335.1749.

3-(N-phthalimido)-1-(3-methoxy-3-oxopropyl)adamantane (3b)

40 mg (33%); light yellow oil; ¹H NMR (CDCl₃, 600 MHz) δ /ppm 7.75-7.74 (m, 2H), 7.67-7.66 (m, 2H), 3.67 (s, 3H, OCH₃), 2.46-2.44 (m, 4H), 2.33-2.30 (m, 2H), 2.23 (br s, 4H), 1.73 (d, 1H, *J* = 12.4 Hz), 1.59 (d, 1H, *J* = 12.4 Hz), 1.56-1.53 (m, 4H), 1.45 (d, 2H, *J* = 12.2 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ /ppm 174.6 (s, COO), 169.6 (s, 2C, C=O), 133.5 (d, 2C), 131.8 (s, 2C), 122.4 (d, 2C), 60.7 (s), 51.4 (q, OCH₃), 44.2 (t), 40.4 (t, 2C), 39.5 (t, 2C), 38.1 (t), 35.4 (t), 34.2 (s), 29.6 (d, 2C), 27.8 (t); IR (KBr) *v*_{max}/cm⁻¹ 3452.2, 2913.3, 1718.3, 1447.5, 1356.3, 1312.1, 1172.3, 1076.1, 718.7; HRMS, calcd for C₂₂H₂₅NO₄+Na⁺ 390.1676; obsd 390.1676.

3-(N-phthalimido)-1-(3-oxocyclohexyl)adamantane (3c)

36 mg (29%); colorless oil, ¹H NMR (CDCl₃, 300 MHz) δ /ppm 7.77-7.72 (m, 2H), 7.70-7.65 (m, 2H), 2.52-2.44 (m, 5H), 2.43-2.36 (m, 1H), 2.36-2.32 (m, 1H), 2.31-2.17 (m, 4H), 2.16-2.05 (m, 2H), 2.00 (d, 1H, J = 12.7 Hz), 1.76 (d, 1H, J = 12.5 Hz), 1.64-1.56 (m, 3H), 1.53-1.30 (m, 5H); ¹³C NMR (CDCl₃, 75 MHz) δ /ppm 212.6 (s, C=O), 169.6 (s, 2C, C=O), 133.6 (d, 2C), 131.7 (s, 2C), 122.4 (d, 2C), 61.0 (s), 49.0, (d), 42.0 (t), 41.8 (t), 41.3 (t), 39.7 (t), 39.6 (t), 38.3 (t), 37.6 (t), 36.9 (s), 35.6 (t), 29.6 (d), 29.6 (d), 25.4 (t), 24.6 (t); IR (KBr) ν_{max}/cm^{-1} 2909.8, 2854.7, 1769.3, 1702.1, 1466.9, 1450.9, 1702.1, 1364.6, 1313.7, 1076.4; HRMS, calcd for C₂₄H₂₇NO₃+Na⁺ 400.1883; obsd 400.1866.

3-(N-phthalimido)-1-bromadamantane (3d)

10 mg (9 %); colorless oil; ¹H NMR (CDCl₃, 300 MHz) δ /ppm 7.80-7.73 (m, 2H), 7.71-7.64 (m, 2H), 2.51 (br s, 2H), 2.48-2.33 (m, 6H), 1.83-1.65 (m, 5H), 1.56 (ddd, 1H, J =8.0 Hz, J = 10.7 Hz, J = 12.6 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ /ppm 169.4 (s, 2C, C=O), 133.7 (d, 2C), 131.7 (s, 2C), 122.6 (d, 2C), 69.2 (s), 68.2 (s), 47.8 (t), 43.8 (t, 2C), 38.8 (t, 2C), 34.6 (t), 30.7 (d, 2C); IR (KBr) v_{max}/cm⁻¹ 3447.4, 2915.1, 2855.6, 1769, 1704.3, 1354.8, 1308.7, 1121.3, 1100.2, 1077.5, 719.27; HRMS, calcd for C₁₈H₁₈BrNO₂+H⁺ 360.0594; obsd 360.0594.

3-(*N*-phthalimido)-1-(2-cyano-2-deuterioethyl)adamantane (3a-D)

A solution of 3-(*N*-phthalimido)adamantane carboxylic acid (1) (10 mg, 0.031 mmol), K_2CO_3 (2.1 mg, 0.015 mmol) and acrylonitrile **4a** (20 µL, 0.31 mmol) in 20 mL acetone-D₂O (3:1) was irradiated in a Rayonet reactor (8 lamps) for 45 h at 300 nm and continuously purged with argon and cooled with an internal cold finger condenser (tap water). After irradiation, solvent was removed on a rotary evaporator and from the residue organic compound dissolved in CDCl₃ to record its NMR spectra.

yellowish oil, ¹H NMR (CDCl₃, 600 MHz) δ /ppm 7.76-7.73 (m, 2H), 7.69-7.66 (m, 2H), 2.47 (d, 2H, *J*=11.7 Hz), 2.44 (d, 2H, *J*=11.7 Hz) 2.33-2.29 (m, 1H), 2.27-2.25 (m, 2H), 2.24 (s, 2H), 1.80-1.76 (m, 1H), 1.61-1.59 (m, 3H), 1.56 (dd, 2H, *J*=1.2, *J*=12.2 Hz), 1.49 (dd, 2H, *J*=1.2 Hz, *J*=12.2 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ /ppm 169.6 (s, 2C), 133.6 (d, 2C), 131.8 (s, 2C), 122.3 (d, 2C), 120.3 (s, CN), 60.4 (s), 43.9 (t), 40.2 (t, 2C), 39.4 (t, 2C), 38.6 (t), 35.3 (t), 34.4 (s), 29.5 (d, 2C), 10.8 (dt, *J*_{HD}=20.1 Hz); MS (ESI, *m/z*), 337 (25, M+H⁺), 336 (100, M+H⁺).

Quantum yield of decarboxylation of 3-(*N*-phthalimido)adamantane-1-carboxylic acid (1)

Two quartz NMR tubes were charged with 1 mL of the solution (in CH_3CN-H_2O (3:1) or acetone–H₂O (3:1)), of 3-(N-phthalimido)adamantane-1-carboxylic acid (1) (3 mg, 0.009 mmol) and K₂CO₃ (0.62 mg, 0.0045 mmol) or 4-(N-phthalimidomethyl)cyclohexane-1carboxylic acid (3 mg, 0,0105 mmol) and K₂CO₃ (0.73 mg, 0,0053 mmol). The solutions were purged with argon for 15 min and irradiated in a Rayonet reactor at the same time with 3 lamps at 300 nm for 0, 4 and 6 minutes. After each exposure to light, ¹H NMR spectra were taken. The conversion to the photodecarboxlyation product was determined from the spectra, and the quantum yield for the decarboxlation of 1 was calculated from the known quantum vield decarboxylation 4-(*N*for the of phthalimidomethyl)cyclohexane-1-carboxylic acid ($\Phi_{\rm R} = 0.30$).

Irradiation of adamanane-1-carboxylic acid in the presence of *N*-methylphthalimide and acrylonitrile

In a quartz cuvette was dissolved adamantane-1-carboxylic acid (37 mg, 0.205 mmol), *N*-methylphthalimide (3.3 mg, 0.02 mmol), K₂CO₃ (14 mg, 0.102 mmol) and acrylonitrile (**4a**, 137 μ L, 2.052 mmol) in acetone-H₂O (98:2, 20 mL). The solution was purged with argon for 15 minutes and irradiated in Rayonet reactor at 300 nm (8 lamps) for 19 hours. After irradiation, acetone was removed on a rotary evaporator and residue extracted with CH₂Cl₂ (3×15 mL). Organic layer was dried over anhydrous MgSO₄ and solvent was then removed on rotary evaporator. Product ratio was determined from ¹H-NMR and GC. Analysis indicated formatrion of adamantane in the yield of ~90%.

4-(N-phthalimido)phenyl acetic acid (5)

In a round bottom flask (50 mL) equipped with a stopper, phthalic anhydride (1.2 g, 8.1 mmol) was melted. To the melt a solution of 4-aminophenyl acetic acid (847 mg, 5.6 mmol) in CH₂Cl₂ (5 mL) was added. After the addition was complete, the reaction mixture was stirred at 180 °C for 10 minutes with the stopper and then 15 minutes without the stopper to remove H₂O. To the cooled reaction mixture CH₂Cl₂ (50 mL) was added and the solution washed with 10% acetic acid (3×50 mL) and extracted with 10% aqueous NaHCO₃ (3×50 mL). The basic aqueous layer was then acidified with 4M HCl to pH 2 and extracted with CH₂Cl₂ (3×50 mL). The organic layer was dried with anhydrous MgSO4, and after filtration solvent was removed on a rotary evaporator. The pure product **5** (450 mg, 28%) was obtained after crystallization from 50% hexane-CH₂Cl₂.

450 mg (28%), colorless crystals, mp 217-220 °C (lit. 218-220 °C); ¹H NMR (CDCl₃, 300 MHz) δ/ppm 7.98-7.92 (m, 2H), 7.83-7.77 (m, 2H), 7.48-7.40 (m, 4H), 3.72 (s, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ/ppm 175.6 (s, COOH), 167.1 (s, 2C, CO), 134.3 (d, 2C), 133.1 (s, 2C), 131.6 (s, 1C), 130.8 (s, 1C), 130.0 (d, 2C), 126.6 (d, 2C), 123.7 (d, 2C), 40.8 (t, 1C).

Irradiation of 4-(*N*-phthalimido)phenyl acetic acid (5) in the presence of acrylonitrile

4-(*N*-phthalimido)phenyl acetic acid (**5**) (56 mg, 0.2 mmol), K_2CO_3 (13.8 mg, 0.1 mmol) and acrylonitrile **4a** (131 µL, 2 mmol) were disolved in acetone-H₂O (3:1, 20 mL) in a quartz cuvette. Solution was purged with argon for 15 min and then irradiated in a Rayonet reactor (8 lamps) for 4 h at 300. After irradiation, solvent was removed on a rotary evaporator and photoproducts **6** and **7** were isolated on a preparative TLC with 10% MeOH/CH₂Cl₂ and 60%Hexane/15% ethyl acetate/15% CH₂Cl₂ as eluens.

N-(4-methylphenyl)phthalimide (6)

43 mg (77%), colorless crystals, mp 204-206 °C (lit. 204-205 °C); ¹H NMR (CDCl₃, 300 MHz) δ/ppm 7.96-7.90 (m, 2H), 7.80-7.75 (m, 2H), 7.32-7.29 (m, 4H), 2.40 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ/ppm 167.3 (s, 2C), 138.0 (s, 2C), 134.2 (d, 2C), 131.7 (s, 1C), 129.6 (d, 2C), 128.8 (s, 1C), 126.3 (d, 2C), 123.5 (d, 2C), 21.0 (q, 1C).

N-[4-(3-cyanopropyl)phenyl]phthalimide (7) 8 mg (13%), colorless crystals, mp 145-147 °C; ¹H NMR (DMSO-d₆, 300 MHz) δ /ppm 7.99-7.89 (m, 4H), 7.40-7.34 (m, 4H), 2.75 (t, 2H, *J* = 7.9 Hz), 2.53 (t, 2H, *J*=7,1 Hz) 1.91 (dd, 2H, *J* = 7.1, *J* = 7.9 Hz); ¹³C NMR (DMSO-d₆, 75 MHz) δ /ppm 167.1 (s, 2CO), 140.5 (s, 2C), 134.7 (d, 2C), 131.6 (s, 2C), 128.8 (d, 2C), 127.4 (d, 2C), 123.4 (d, 2C), 120.4 (s, CN), 33.6 (t), 26.4 (t), 16.0 (t); IR (KBr) ν_{max}/cm^{-1} 2933, 2856, 2244, 1717, 1516, 1395, 1121, 1099, 1083, 715; HRMS, calcd for C₁₈H₁₄N₂O₂+H⁺ 291.1128; obsd 291.1135.

N-(3-deutero-1-adamantyl)phthalimide (D-2)

A solution of 3-(*N*-phthalimido)adamantane carboxylic acid (1) (10 mg, 0.031 mmol) and K_2CO_3 (2.1 mg, 0.015 mmol) in 3 mL d₆-acetone/H₂O (3:1) was divided in three quartz NMR tubes. Each dolution was purged with argon and irradiated at the same time in a Rayonet reactor (8 lamps) for 7 minutes at 300 nm. After irradiation, samples were combined and solvent was removed on a rotary evaporator. Pure product was isolated on

.

preparative TLC with 5% MeOH-CH₂Cl₂ as eleunt and characterized by NMR and MS spectra.

5 mg, colorless crystals, ¹H NMR (CDCl₃, 300 MHz) δ/ppm 7.78-7.71 (m, 2H), 7.69-7.62 (m, 2H), 2.51 (s, 6H), 2.16 (s, 2H) 1.84-1.66 (m, 6H); MS (ESI, *m/z*), 283.2 (100, M+H⁺), 284.2 (21).

2. Stern-Volmer plot for the quenching of the triplet excited state of 1 with ethyl vinyl ether.

SpinWorks 2.5: MGH-134-ETER2

SpinWorks 2.5: MGH-134-eter2-apt

7.6

PPM

7.2

6.8

6.4

6.0

5.2

4.8

4.4

4.0

3.6

3.2

5.6

9. ¹H NMR (CDCl₃, 600 MHz) of **3b** 0 _OCH₃ В n 10 o' a SpinWorks 2.5: MGH-197/7-8/A 2.4521 2.4478 **8.889** 3.6696 5512 5482 5374 5374 5300 4662 4461 4 11 1.333 2.152 Å S 250 191

-0.0000

1.6

2.0

0.8

0.4

1.2

2.4

2.8

13. ¹H NMR (CDCl₃, 300 MHz) of **3d**

SpinWorks 2.5: Mgh-179-2-C

SpinWorks 2.5: MGH-179-2-C

15. ¹H NMR (CDCl₃, 300 MHz) of **5**

ноос о́ SpinWorks 2.5: MGH-237-pk1

17. ¹H NMR (CDCl₃, 300 MHz) of **6**

H₃C Ö SpinWorks 2.5: MGH-241+238-A

18. ¹³C NMR (CDCl₃, 75 MHz, APT) of **6**

H₃C

SpinWorks 2.5: MGH-238+241/A-APT

20. ¹³C NMR (DMSO-*d*₆, 75 MHz, APT) of 7

