Supporting information for

## Mesogenic BODIPYs: The investigation of the correlation between liquid crystalline behaviour and fluorescence intensity

S1: Experimental. ..... 2
S2: DSC thermograms for compounds 1, 2 and 4 ..... 18
S3: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra for mesogenic BODIPYs (compounds 1-6) ..... 21
S4: HRMS profiles for compounds 1-6 ..... 27
S5: HPLC traces for compounds 1-6 ..... 33

## S1: Experimental

Transition temperatures and enthalpies were determined using a Mettler DSC822e differential scanning calorimeter with STARe software, under nitrogen/helium, at a rate of $10^{\circ} \mathrm{C} / \mathrm{min}$, calibrated with indium $\left(156.6^{\circ} \mathrm{C}, 28.45 \mathrm{~J} \mathrm{~g}\right.$ g $)$ and using an aluminium reference. Optical studies were carried out using an Olympus BH-2 optical polarising microscope equipped with a Mettler FP82 HT hot stage and a Mettler FP90 central processor. Photograph images of the mesophases were taken using a JVC digital video camera connected to a PC. Software Studio Capture, supplied by Studio86Designs, was used for image capturing.

NMR spectra were recorded on a Jeol JNM ECP400 spectrometer, with TMS $\delta_{\mathrm{H}}=0$ as the internal standard or residual protic solvent. $\left[\mathrm{CDCl}_{3}, \delta_{\mathrm{H}}=7.26 ; \mathrm{CD}_{3} \mathrm{OD}, \delta_{\mathrm{H}}=3.30\right]$. Chemical shifts are given in ppm ( $\delta$ ) and coupling constants $(J)$ are given in Hertz $(\mathrm{Hz})$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ were recorded at 400 MHz ; ${ }^{13} \mathrm{C}-\mathrm{NMR}$ recorded at $100.5 \mathrm{MHz} ;{ }^{11} \mathrm{~B}-\mathrm{NMR}$ recorded at 128.3 MHz .

UV-visible spectra were measured on a Varian Cary 50 Bio UV-visible Spectrophotometer and an ATI Unicam UV2-100 spectrometer. Fluorescence spectra were measured using a Jobin-Yvon Horiba Fluorolog 3-22 Tau-3 spectrofluorometer with a right angle illumination method. All measurements were carried out in a 4 -sided quartz cuvette of 10 mm diameter. Lifetime measurements were obtained via the time-correlated single photon counting technique. Samples were excited by a Nd:YAG laser (at an excitation wavelength of 532 nm ). Emission was collected at $90^{\circ}$ to the source of excitation. The emission wavelength was selected by a monochromator (Jobin Yvon Triax 190). All measurements were performed in a four-sided cuvette using an absorbance value of 0.1 , which was measured and checked using the Unicam spectrometer. The Fluorescence lifetime values were quoted to 1 decimal place. Fluorescence quantum yields with an absorbance at the maximum typically below 0.2 were determined by use of an integrating sphere with a HORIBA Jobin-Yvon Fluorolog FL3-22 Tau-3, following a method described in the literature. ${ }^{28}$ All measurements, unless
stated, were obtained at 298 K and aerated. The dye-doped liquid crystal measurements were acquired by excitation of BODIPY-doped BL024 incorporated into a twisted nematic cell with a Ti:Saph laser (at an excitation wavelength of 300 nm in order to avoid spectral overlap of the excitation beam and the BODIPY emission). Emission of these samples was collected parallel to the source of excitation.

Thin-layer chromatography (TLC) was performed using Merck aluminium plates coated with silica gel $60 \mathrm{~F}_{254}$ and visualised under UV light or using potassium permanganate solution. Column chromatography was performed using MP Silica 32-63, 60 Å. All solvent mixtures are given in $\mathrm{v} / \mathrm{v}$ ratios.

4-Hydroxybenzozic acid, 11-bromoundecanol, DMAP and 4-iodobenzoic acid were purchased from Alfa Aesar and used as received. Sodium hydroxide, DCC, copper (I) iodide, triethylamine and (2-biphenyl)di-tert-butylphosphine were purchased from Sigma Aldrich and used as received. 4'-(11-Hydroxyundecyl)-biphenyl-4-carbonitrile was purchased from TCI Europe and used as received. 4-Carboxyphenylboronic acid pinacol ester was purchased from Frontier Scientific and used as received. All solvents and desiccants were purchased from Fisher Scientific and used as received. Dibenzylideneacetone palladium (II) and bis(triphenylphosphine)palladium (II) chloride were purchased from Strem Chemicals and used as received.

The microwave-assisted reactions were carried out in a CEM Discover System.

## 8-(4-Bromophenyl)-BODIPY (A):

4-Bromobenzaldehyde ( $5 \mathrm{~g}, 0.027 \mathrm{~mol}$ ) was dissolved in pyrrole ( 75 ml ) and the solution was degassed with nitrogen for 20 mins . TFA $(0.2 \mathrm{ml})$ was then added and the mixture was stirred for 20mins. The pyrrole was removed in vacuo and dichloromethane ( 100 ml ) was then added and the solution was washed with sat. $\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq)}}$ ( 50 ml ) and water ( $2 \times 50 \mathrm{ml}$ ), dried over $\mathrm{MgSO}_{4}$ and evaporated. The residue was redissolved in dichloromethane ( 100 ml ) and chloranil $(6.64 \mathrm{~g})$ was added and the mixture was stirred for 16hrs.

Diisopropylethylamine ( 25.87 ml ) was then added followed by boron trifluoride diethyl etherate $(24.99 \mathrm{ml})$ and the mixture was stirred under nitrogen for 16 hrs . The solution was then washed with $2 \% \mathrm{HCl}_{(\mathrm{aq})}(75 \mathrm{ml})$ and water ( $3 \times 75 \mathrm{ml}$ ), dried over anhydrous $\mathrm{MgSO}_{4}$ and evaporated in vacuo. The residue was purified by column chromatography eluting with 4:6 hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield the product as a red solid $(0.52 \mathrm{~g}, 6 \%)$, m.p. $202-203^{\circ} \mathrm{C}$, lit. $202-203^{\circ} \mathrm{C}^{29}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left[400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 6.56(2 \mathrm{H}, \mathrm{m}, \mathrm{Py}-\mathrm{H}), 6.91(2 \mathrm{H}, \mathrm{m}, \mathrm{Py}-\mathrm{H}), 7.45(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}$, $J=8.61 \mathrm{~Hz}), 7.67(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.61 \mathrm{~Hz}), 7.96(2 \mathrm{H}, \mathrm{m}, \mathrm{Py}-\mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR [100MHz, $\mathrm{CDCl}_{3}$ ] $\delta 118.8,125.5,131.3,131.8,132.7,134.7,144.6,145.8$.
${ }^{11}$ B-NMR $\left[128.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta-0.49$.

HRMS (ESI) = calc. 368.9981 and 370.9960 , found. 368.9984 and $370.9963\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

## 8-(4-Iodophenyl)-1,3,5,7-tetramethyl-BODIPY (B):

4-Iodobenzoyl chloride ( $2 \mathrm{~g}, 7.51 \mathrm{mmol}$ ) and 2,4-dimethylpyrrole ( $1.55 \mathrm{ml}, 15.2 \mathrm{mmol}$ ) were dissolved in dry dichloromethane $(60 \mathrm{ml})$ and the solution was refluxed under nitrogen for 3 hrs . The solution was cooled to r.t. and triethylamine $(4.88 \mathrm{ml}, 35 \mathrm{mmol})$ was then added followed by boron trifluoride diethyl etherate $(5.01 \mathrm{ml}, 39.5 \mathrm{mmol})$ and the solution was stirred at r.t. for 16 hrs . The solution was then washed with water ( $3 \times 50 \mathrm{ml}$ ) and dried over anhydrous $\mathrm{MgSO}_{4}$ and evaporated in vacuo. The residue was purified by column chromatography eluting with $1: 1$ hexane: $\mathrm{CHCl}_{3}$ to yield the pure product as a bright orange solid ( $1.18 \mathrm{~g}, 35 \%$ ), m.p. $213-214^{\circ} \mathrm{C}$, lit. $213-215^{\circ} \mathrm{C}^{30}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left[400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 1.42\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 2.55\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 5.99(2 \mathrm{H}, \mathrm{s}$, Py-H), 7.04 ( $2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.43 \mathrm{~Hz}$ ), 7.85 ( $2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.43 \mathrm{~Hz}$ ).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left[100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ] $\delta 14.59,14.65,94.7,121.4,129.9,131.1,134.6,138.3$, 142.9, 155.9.
${ }^{11}$ B-NMR $\left[128.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta-0.2446$.

HRMS $(E S I)=$ calc. 451.0649 , found $451.0650\left(M+\mathrm{H}^{+}\right)$.

## 8-(4-Iodophenyl)-1,3,5,7-tetramethyl-2,6-diethyl-BODIPY (C):

4-Iodobenzoyl chloride ( $2 \mathrm{~g}, 7.51 \mathrm{mmol}$ ) and kryptopyrrole ( $2.03 \mathrm{ml}, 15.02 \mathrm{mmol}$ ) were dissolved in dry dichloromethane ( 60 ml ) and the solution was heated at reflux under nitrogen for 3 hrs . The solution was cooled to r.t. and triethylamine ( $4.88 \mathrm{ml}, 35.0 \mathrm{mmol}$ ) was then added followed by boron trifluoride diethyl etherate ( $5.01 \mathrm{ml}, 39.5 \mathrm{mmol}$ ) and the solution was stirred under nitrogen for 18 hrs. The solution was then washed with water ( $4 \times 50 \mathrm{ml}$ ), dried over anhydrous $\mathrm{MgSO}_{4}$ and evaporated in vacuo. The residue was passed through a short silica column eluting with 1:4 hexane:toluene and evaporated in vacuo. The crude product was purified by column chromatography eluting with 1:4 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ :hexane after dry loading to yield the pure product as a bright red solid $(1.36 \mathrm{~g}$, $36 \%$ ), m.p. $290^{\circ} \mathrm{C}$ (decomp.).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left[400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 0.98\left(6 \mathrm{H}, \mathrm{t}, 2 \times \mathrm{CH}_{3} \mathrm{CH}_{2}, J=7.52 \mathrm{~Hz}\right), 1.31(6 \mathrm{H}, \mathrm{s}, 2 \times$ $\left.\mathrm{CH}_{3}\right), 2.29\left(4 \mathrm{H}, \mathrm{q}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.57 \mathrm{~Hz}\right), 2.52\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 7.04(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J$ $=7.88 \mathrm{~Hz}), 7.83(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=7.88 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left[100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 11.9,12.5,14.6,17.1,94.4,130.3,133.0,135.4,138.2$, 154.1.
${ }^{11} \mathrm{~B}-\mathrm{NMR}\left[128.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 0.0000$.

HRMS $(E S I)=$ calc. 507.1279, found $507.1269(\mathrm{M}+\mathrm{H})^{+}$.

## 8-(4-Trimethylsilylethynylphenyl)-BODIPY:

4-[(Trimethylsilyl)ethynyl]benzaldehyde $(2 \mathrm{~g}, 9.89 \mathrm{mmol})$ was dissolved in freshly distilled pyrrole ( $17.2 \mathrm{ml}, 0.25 \mathrm{~mol}$ ) and the mixture was degassed with argon for 15 mins . TFA $(0.1 \mathrm{ml})$ was then added and the mixture was stirred at r.t. under argon for 15 mins . The excess pyrrole was then distilled off under reduced pressure. The oily residue was then passed through a short silica plug eluting with dichloromethane to remove the pyrrolic by-products. The solvent was removed and redissolved in dry dichloromethane $(50 \mathrm{ml})$ and chloranil $(2.43 \mathrm{~g}, 9.89 \mathrm{mmol})$ was then added and the mixture was stirred at r.t. for 15 hrs . Diisopropylethylamine ( $18.95 \mathrm{ml}, 0.11 \mathrm{~mol}$ ) was then added followed by boron trifluoride diethyl etherate $(18.79 \mathrm{ml}, 0.15 \mathrm{~mol})$. The solution was then stirred at r.t. for 16hrs. The solution was then filtered through a pad of celite and the filtrate was washed with water ( $4 \times 75 \mathrm{ml}$ ), dried over anhydrous $\mathrm{MgSO}_{4}$, filtered and evaporated in vacuo. The residue was purified by column chromatography eluting with 5:95 EtOAc: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield the product as dark red needles (494mg, $14 \%$ ), m.p. $140-141^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left[400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 0.22\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 6.48(2 \mathrm{H}, \mathrm{m}, \mathrm{Py}-\mathrm{H}), 6.83(2 \mathrm{H}, \mathrm{m}$, Py-H), 7.45 (2H, d, Ph-H, $J=8.43 \mathrm{~Hz}$ ), 7.55 ( $2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.43 \mathrm{~Hz}$ ), 7.88 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{Py}-$ H).
${ }^{13} \mathrm{C}$-NMR $\left[100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 97.8,103.9,118.8,126.1,130.5,131.5,132.1,132.8$, 144.5.
${ }^{11}$ B-NMR $\left[128.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta-0.49$.

HRMS $(E S I)=$ calc. 365.1452 , found. $365.1458\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

## 8-(4-Ethynylphenyl)-BODIPY (D):

8-(4-Trimethylsilylethynylphenyl)-BODIPY ( $390 \mathrm{mg}, 1.07 \mathrm{mmol}$ ) was dissolved in THF $(30 \mathrm{ml})$ and TBAF $(0.48 \mathrm{~g}, 2.14 \mathrm{mmol})$ was then added and the solution was stirred at r.t.

Electronic Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is (c) The Royal Society of Chemistry and Owner Societies 2011
for 15 hrs . The THF was then removed in vacuo and the residue dissolved in dichloromethane $(50 \mathrm{ml})$ and washed with $2 \% \mathrm{HCl}_{(\mathrm{aq})}(30 \mathrm{ml})$ and water ( 2 x 30 ml ) followed by drying over anhydrous $\mathrm{MgSO}_{4}$, filtration and evaporation in vacuo. The residue was purified by column chromatography eluting with $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ :hexane to yield the product as a bright red solid ( $185 \mathrm{mg}, 59 \%$ ), m.p. $182-183^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left[400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 3.19(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} \equiv \mathrm{C}), 6.49(2 \mathrm{H}, \mathrm{m}, \mathrm{Py}-\mathrm{H}), 6.84(2 \mathrm{H}, \mathrm{m}$, Py-H), 7.47 (2H, d, Ph-H, $J=8.44 \mathrm{~Hz}$ ), 7.58 ( $2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.44 \mathrm{~Hz}$ ), 7.89 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{Py}-$ H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left[100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right]$ $\delta 77.0,79.7,115.9,122.0,127.5,128.5,129.3,131.2,131.8$, 141.6.
${ }^{11}$ B-NMR $\left[128.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta-0.73$
$M S(E S I)=292.0\left(\mathrm{M}^{-}\right)$.

## 8-(4-Trimethylsilylethynylphenyl)-1,3,5,7-tetramethyl-BODIPY:

4-[Trimethylsilyl]ethynylbenzaldehyde ( $1.4 \mathrm{~g}, 6.92 \mathrm{mmol}$ ) and 2,4-dimethylpyrrole $(1.43 \mathrm{ml}, 13.8 \mathrm{mmol})$ were dissolved in dry dichloromethane ( 70 ml ) and degassed with argon for 20 mins . TFA $(0.1 \mathrm{ml})$ was then added and the solution was stirred at r.t. under nitrogen for 16 hrs . DDQ $(1.57 \mathrm{~g}, 6.92 \mathrm{mmol})$ was then added and the solution was stirred at r.t. for 5 hrs . Triethylamine $(4.82 \mathrm{ml}, 34.6 \mathrm{mmol})$ and boron trifluoride diethyl etherate ( $5.70 \mathrm{ml}, 45.0 \mathrm{mmol}$ ) were then added and the solution was stirred at r.t. for 16 hrs . The solution was then washed with water ( $4 \times 50 \mathrm{ml}$ ), dried over anhydrous $\mathrm{MgSO}_{4}$ and evaporated in vacuo. The residue was then passed through a short silica column eluting with $1: 1$ hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and evaporated in vacuo. The residue was then purified by column chromatography eluting with $3: 2$ hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield the pure product as a bright red solid ( $299 \mathrm{mg}, 10 \%$ ), m.p. $214-215^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left[400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 0.21\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 1.32\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 2.48(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}$ $\left.\mathrm{CH}_{3}\right), 5.91(2 \mathrm{H}, \mathrm{s}, \mathrm{Py}-\mathrm{H}), 7.17(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.44 \mathrm{~Hz}), 7.53(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.44 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left[100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 14.7,95.9,104.3,121.5,124.0,128.2,132.8,135.3,143.1$, 155.9 .
${ }^{11} \mathrm{~B}-\mathrm{NMR}\left[128.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta-0.3060$.

HRMS $(E S I)=$ calc. 365.1452 , found. $365.1458\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

## 8-(4-Ethynylphenyl)-1,3,5,7-tetramethyl-BODIPY (E):

5-(4-Trimethylsilylethynylphenyl)-2,4,6,8-tetramethyl-BODIPY (250mg, 0.595 mmol$)$ was dissolved in methanol $(20 \mathrm{ml})$ and anhydrous potassium carbonate $(8 \mathrm{mg}, 59.5 \mu \mathrm{~mol})$ was added and the mixture was stirred at r.t. for 16 hrs . Dichloromethane $(80 \mathrm{ml})$ was then added and the mixture was washed with water ( $3 \times 50 \mathrm{ml}$ ), dried over anhydrous $\mathrm{MgSO}_{4}$ and evaporated in vacuo. The residue was purified by column chromatography eluting with $3: 2$ hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield the pure product as a bright red solid $(137 \mathrm{mg}, 66 \%)$, m.p. $252-253^{\circ} \mathrm{C}$, lit. $251-252^{\circ} \mathrm{C}$, lit. $252-254^{\circ} \mathrm{C}^{31}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left[400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 1.40\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 2.55\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 3.18(1 \mathrm{H}, \mathrm{s}$, $\mathrm{C} \equiv \mathrm{CH}), 5.99(2 \mathrm{H}, \mathrm{s}, \mathrm{Py}-\mathrm{H}), 7.27(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.13 \mathrm{~Hz}), 7.63(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=$ 8.44 Hz ).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left[100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 13.0,77.0,81.3,119.8,121.4,126.7,131.3,134.0,135.6$, 141.4, 154.3.
${ }^{11} \mathrm{~B}-\mathrm{NMR}\left[128.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta-0.2205$.

HRMS $(E S I)=$ calc. 349.1682 , found $349.1688\left(\mathrm{M}^{+}\right)$.

## 8-(4-Ethynylphenyl)-1,3,5,7-tetramethyl-2,6-diethyl-BODIPY (F):

$4-[($ Trimethylsilyl $)$ ethynyl]benzaldehyde $(2 \mathrm{~g}, ~ 9.89 \mathrm{mmol})$ and kryptopyrrole $(2.74 \mathrm{ml}$, 20.3 mmol ) were dissolved in dry dichloromethane ( 100 ml ) and degassed with argon for 15 mins . TFA $(0.1 \mathrm{ml})$ was then added and the solution was stirred at r.t. under argon for 16 hrs . Chloranil ( $2.43 \mathrm{~g}, 9.89 \mathrm{mmol}$ ) was then added and the mixture stirred at r.t. for 4 hrs . Triethylamine ( $6.89 \mathrm{ml}, 49.6 \mathrm{mmol}$ ) was then added, followed by boron trifluoride diethyl etherate ( $3.66 \mathrm{ml}, 29.7 \mathrm{mmol}$ ) and the solution stirred at r.t. under argon for 17 hrs . The solution was then washed with water ( 4 x 80 ml ), dried over anhydrous $\mathrm{MgSO}_{4}$, filtered and evaporated in vacuo. The residue was passed through a short silica column eluting with $2: 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ :hexane to remove the pyrrolic by-products. The collected fractions were then dissolved in methanol ( 15 ml ) and anhydrous potassium carbonate ( 15 mg , cat.) was added to the solution which was then stirred at r.t. for 16 hrs . The methanol was evaporated in vacuo and the residue was purified by column chromatography eluting with 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ :hexane to yield the pure product as a red solid ( $309 \mathrm{mg}, 10 \%$ ), m.p. 249 $250^{\circ} \mathrm{C}$, lit. $250^{\circ} \mathrm{C}^{32}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left[400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 0.97\left(6 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3} \mathrm{CH}_{2}, J=7.61 \mathrm{~Hz}\right), 1.29(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x} \mathrm{Me})$, $2.29\left(4 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{3} \mathrm{CH}_{2}, J=7.51 \mathrm{~Hz}\right), 2.52(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x} \mathrm{Me}), 3.18(1 \mathrm{H}, \mathrm{s}, \mathrm{HCC}-\mathrm{Ph}), 7.26(2 \mathrm{H}$, d, Ph-H, $J=8.43 \mathrm{~Hz}$ ), 7.61 ( $2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J-8.43 \mathrm{~Hz}$ ).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left[100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 10.5,11.1,13.2,15.7,19.4,119.3,121.3,127.1,131.4$, 131.6, 135.1, 136.8, 152.7.
${ }^{11}$ B-NMR $\left[128.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta-0.1224$.

HRMS $(E S I)=$ calc. 405.2308 , found. $405 \cdot 2311\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

## 4-(11-Hydroxyundecyloxy)-benzoic acid:

4-Hydroxybenzoic acid ( $6 \mathrm{~g}, 0.043 \mathrm{~mol}$ ) and sodium hydroxide ( 3.44 g in 21 ml water) was dissolved in ethanol ( 100 ml ) and heated to reflux. 11 -Bromoundecanol $(8.25 \mathrm{~g}, 0.033 \mathrm{~mol})$ in ethanol $(25 \mathrm{ml})$ was then added dropwise. Once addition was complete, the mixture was refluxed for 16 hrs . The mixture was then cooled to r.t. and the ethanol was removed in vacuo. Water $(150 \mathrm{ml})$ was then added and the solution acidified with conc. $\mathrm{HCl}_{(\mathrm{aq})}$ and the resulting precipitate filtered off and recrystallized from isopropanol to yield the pure product as a white solid $(7.28 \mathrm{~g}, 72 \%)$ m.p. $108-110^{\circ} \mathrm{C}$ (lit. $110^{\circ} \mathrm{C}^{33}$ ).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left[\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right] \delta 1.32\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ 's) $1.50\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}{ }^{\prime} \mathrm{s}\right) 1.78(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 3.53\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{OH}, J=6.57 \mathrm{~Hz}\right), 4.03\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{O}, J=6.57 \mathrm{~Hz}\right), 6.96(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-$ $\mathrm{H}, J=9.07 \mathrm{~Hz}), 7.95(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=9.07 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left[\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right] \delta 26.9,30.59,30.64,30.68,33.7,63.0,69.3,115.1,123.8$, 132.8, 164.6, 169.9.

HRMS $($ ESI $)=$ calc. 309.2060, found $309.2063\left(M+\mathrm{H}^{+}\right)$.

## 4-(11-Hydroxyundecyloxy)-phenyl-4'-cyano-4-biphenyl carboxylate:

4-(11-Hydroxyundecyloxy)benzoic acid ( $2 \mathrm{~g}, 6.48 \mathrm{mmol}$ ) and 4'-(11-hydroxyundecyl)-biphenyl-4-carbonitrile $(1.29 \mathrm{~g}, 6.61 \mathrm{mmol})$ were dissolved in dry dichloromethane $(80 \mathrm{ml})$. DCC $(2.27 \mathrm{~g}, 0.088 \mathrm{~mol})$ and $\operatorname{DMAP}(0.82 \mathrm{~g}, 6.68 \mathrm{mmol})$ were then added and the mixture was stirred under nitrogen for 20 hrs . The mixture was then filtered and the filtrate washed with $2 \% \mathrm{HCl}_{(\mathrm{aq})}(50 \mathrm{ml})$, sat. $\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})}(50 \mathrm{ml})$ and water ( $2 \times 50 \mathrm{ml}$ ), dried over $\mathrm{MgSO}_{4}$, filtered and evaporated. The residue was recrystallized from ethyl acetate to yield the pure product as a white solid (2.11g, 67\%), Cr 125 N 175 I.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left[\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right] \delta 1.29\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.46\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.81\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $3.63\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{OH}, J=6.72 \mathrm{~Hz}\right), 4.03\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{OPh}, J=6.72 \mathrm{~Hz}\right), 6.96(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J$
$=9.07 \mathrm{~Hz}), 7.31(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.76 \mathrm{~Hz}), 7.62(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.76 \mathrm{~Hz}), 7.68(2 \mathrm{H}, \mathrm{d}$, $\mathrm{Ph}-\mathrm{H}, J=8.44 \mathrm{~Hz}$ ), 7.71 ( $2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.76 \mathrm{~Hz}$ ), 8.14 ( $2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.76 \mathrm{~Hz}$ ).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left[\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right] \delta 25.7,29.47,29.50,29.55,32.8,63.1,68.3,111.0,114.4$, $118.9,121.2,122.6,127.7,128.3,132.3,132.6,136.7,144.9,151.6,163.7,164.8$.

HRMS $(E S I)=$ calc. 503.2904, found $503.2899\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$.

## 4-(11-Carboxy-(4-[boronic acid pinacolate]-phenyl))-phenyl-4'-cyano-4-biphenyl carboxylate (G):

4-(11-Hydroxyundecyloxy)-phenyl-4'-cyano-4-biphenyl carboxylate ( $0.80 \mathrm{~g}, 1.64 \mathrm{mmol}$ ), 4-carboxyphenylboronic acid pinacol ester $(0.40 \mathrm{~g}, 1.61 \mathrm{mmol})$, DCC ( $0.56 \mathrm{~g}, 2.74 \mathrm{mmol}$ ) and DMAP $(0.20 \mathrm{~g}, 1.66 \mathrm{mmol})$ were dissolved in dry dichloromethane $(50 \mathrm{ml})$ and the solution was stirred at r.t. for 16 hrs . The precipitate was then filtered off and the filtrate was washed with $2 \% \mathrm{HCl}_{(\mathrm{aq})}(40 \mathrm{ml})$ and water ( 2 x 40 ml ), dried over $\mathrm{MgSO}_{4}$ and evaporated. The residue was then recrystallized from ethyl acetate to yield the pure product as a white crystalline solid ( $0.80 \mathrm{~g}, 78 \%$ ).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left[400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 1.33\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}{ }^{\prime} \mathrm{s}\right), 1.36\left(12 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{CH}_{3}\right), 1.47(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2}$ 's), $1.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ 's), $4.06\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{OPh}, J=6.51 \mathrm{~Hz}\right), 4.33\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{O}, J=\right.$ $6.78 \mathrm{~Hz}), 6.99(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.98 \mathrm{~Hz}), 7.34(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.61 \mathrm{~Hz}), 7.65(2 \mathrm{H}, \mathrm{d}$, $\mathrm{Ph}-\mathrm{H}, J=8.80 \mathrm{~Hz}), 7.70(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.61 \mathrm{~Hz}), 7.75(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.61 \mathrm{~Hz}), 7.87$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.43 \mathrm{~Hz}), 8.03(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.43 \mathrm{~Hz}), 8.16(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=$ 8.98 Hz ).
${ }^{13} \mathrm{C}-$ NMR $\left[100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 24.9,26.0,28.7,29.1,29.2,29.3,29.5,65.2,68.4,84.2$, $111.0,114.4,118.9,121.2,122.6,127.7,128.3,128.5,132.3,132.6,132.7,134.6,136.7$, $144.9,151.6,163.7,164.8,166.7$.
${ }^{11}$ B-NMR [128.3MHz, $\left.\mathrm{CDCl}_{3}\right] \delta$ 29.74.

HRMS $(E S I)=$ calc. 733.4026, found $733.4011\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$.

## 4-(11-Carboxy-(4-iodophenyl))-phenyl-4'-cyano-4-biphenyl carboxylate (H):

4-Iodobenzoic acid ( $0.32 \mathrm{~g}, 1.29 \mathrm{mmol}$ ) and 4-(11-hydroxyundecyloxy)-phenyl-4'-cyano-4-biphenyl carboxylate (11) ( $0.63 \mathrm{~g}, 1.31 \mathrm{mmol}$ ) were dissolved in dry dichloromethane $(75 \mathrm{ml})$. DCC $(0.45 \mathrm{~g}, 2.19 \mathrm{mmol})$ and DMAP $(0.16 \mathrm{~g}, 1.33 \mathrm{mmol})$ were then added and the solution was stirred under nitrogen for 16 hrs . The mixture was then filtered and the filtrate was washed with $2 \% \mathrm{HCl}_{(\mathrm{aq})}(50 \mathrm{ml})$ and water ( $2 \times 50 \mathrm{ml}$ ), dried over $\mathrm{MgSO}_{4}$ and evaporated. The residue was the recrystallized from ethyl acetate to yield the pure product as a white solid ( $0.65 \mathrm{~g}, 71 \%$ ).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left[400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 1.30\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}{ }^{\prime} \mathrm{s}\right), 1.73\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ 's), $4.04(2 \mathrm{H}, \mathrm{t}$, $\left.\mathrm{CH}_{2} \mathrm{OPh}, J=6.57 \mathrm{~Hz}\right), 4.29\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{O}, J=6.72 \mathrm{~Hz}\right), 6.97(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=9.07 \mathrm{~Hz})$, $7.31(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.76 \mathrm{~Hz}), 7.62$ ( $2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.76 \mathrm{~Hz}$ ), 7.67 ( $2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=$ 8.44 Hz ), 7.73 ( $4 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.76 \mathrm{~Hz}$ ), 7.77 ( $2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.76 \mathrm{~Hz}$ ), 8.14 ( $2 \mathrm{H}, \mathrm{d}$, $\mathrm{Ph}-\mathrm{H}, J=8.76 \mathrm{~Hz}$ ).
${ }^{13} \mathrm{C}$-NMR $\left[100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 26.0,29.01,29.08,29.2,29.5,65.4,68.4,111.0,114.4$, $118.9,121.2,122.6,127.7,128.3,131.0,132.3,132.6,137.7,144.9,151.6,163.7,164.9$.

HRMS $(\mathrm{ESI})=$ calc. 733.2133 , found $733.2132\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$.

## Compound 1:

A ( $50 \mathrm{mg}, 0.144 \mathrm{mmol}$ ), $\mathbf{G}(109 \mathrm{mg}, 0.173 \mathrm{mmol})$, dibenzylideneacetone palladium (II) ( $36 \mathrm{mg}, 39.6 \mu \mathrm{~mol}$ ), (2-biphenyl)di-tert-butylphosphine ( $17 \mathrm{mg}, 57.6 \mu \mathrm{~mol}$ ) and sodium carbonate ( $46 \mathrm{mg}, 0.432 \mathrm{mmol}$ ) were mixed in DMF ( 6 ml ) and degassed with argon for 30 mins . The mixture was then heated in a microwave for 5 mins at $65^{\circ} \mathrm{C}(75 \mathrm{~W})$. The DMF was then removed in vacuo and the residue was purified by column
chromatography eluting with $1: 1$ hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield the pure product as a red solid $(24 \mathrm{mg}, 20 \%), R_{f}=0.61\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left[400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 1.33\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}{ }^{\prime} \mathrm{s}\right), 1.48\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}{ }^{\prime} \mathrm{s}\right), 1.81(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}{ }^{\prime} \mathrm{s}\right), 4.04\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{OPh}, J=6.60 \mathrm{~Hz}\right), 4.36\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{O}, J=6.78 \mathrm{~Hz}\right), 6.56(2 \mathrm{H}, \mathrm{m}$, Py-H), $6.98(4 \mathrm{H}, \mathrm{m}, \mathrm{Py}-\mathrm{H}+\mathrm{Ph}-\mathrm{H}), 7.31(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.61 \mathrm{~Hz}), 7.63(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J$ $=8.61 \mathrm{~Hz}), 7.67(4 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.43 \mathrm{~Hz}), 7.73(4 \mathrm{H}, 2 \mathrm{x} \mathrm{d}, \mathrm{Ph}-\mathrm{H}), 7.78(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=$ $8.43 \mathrm{~Hz}), 7.96(2 \mathrm{H}, \mathrm{m}, \mathrm{Py}-\mathrm{H}), 8.16(4 \mathrm{H}, 2 \mathrm{x} \mathrm{d}, \mathrm{Ph}-\mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left[100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 25.98,26.03,28.7,29.1,29.27,29.33,29.5,65.3,68.3$, $111.0,114.3,118.7,121.2,122.6,127.1,127.3,127.7,128.3,130.3,131.2,131.5,132.3$, $132.7,133.5,134.9,136.7,144.3,144.9,151.6,163.7,166.4$.
${ }^{11} \mathrm{~B}-\mathrm{NMR}\left[128.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta-0.4891$.
$\operatorname{HRMS}(E S I)=$ calc. 873.4002 , found $873.4003\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$.

## Compound 2:

B $(60 \mathrm{mg}, 0.133 \mathrm{mmol}), \mathbf{G}(101 \mathrm{mg}, 0.160 \mathrm{mmol})$, dibenzylideneacetone palladium (II) ( $36 \mathrm{mg}, 39.5 \mu \mathrm{~mol}$ ), (2-biphenyl)di-tert-butylphosphine $(16 \mathrm{mg}, 53.2 \mu \mathrm{~mol}$ ) and potassium carbonate $(55 \mathrm{mg}, 0.399 \mathrm{mmol})$ were mixed in DMF ( 6 ml ) and degassed with argon for 30 mins . The mixture was then heated in a microwave for 5 mins at $65^{\circ} \mathrm{C}(75 \mathrm{~W})$. The DMF was then removed in vacuo and the residue was subjected column chromatography eluting with $0.5: 99.5 \mathrm{EtOAc}$ :toluene. The residue was precipitated from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with cold MeOH to yield the pure product as a bright orange solid ( $59 \mathrm{mg}, 49 \%$ ), $R_{f}=0.21$ (toluene).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left[400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 1.34\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}{ }^{\prime} \mathrm{s}\right), 1.44\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.49(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}{ }^{\prime} \mathrm{s}\right), 1.81\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ 's $), 2.57\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 4.05\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{OPh}, J=6.57 \mathrm{~Hz}\right)$, $4.36\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{O}, J=6.72 \mathrm{~Hz}\right), 6.00(2 \mathrm{H}, \mathrm{s}, \mathrm{Py}-\mathrm{H}), 6.98(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.76 \mathrm{~Hz}), 7.32$

Electronic Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is (c) The Royal Society of Chemistry and Owner Societies 2011
$(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, ~ J=8.76 \mathrm{~Hz}), 7.39(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, ~ J=8.13 \mathrm{~Hz}), 7.63(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=$ $8.76 \mathrm{~Hz}), 7.69(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.44 \mathrm{~Hz}), 7.75(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}), 8.15(4 \mathrm{H}, \mathrm{dd}, \mathrm{Ph}-\mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR [100MHz, $\mathrm{CDCl}_{3}$ ] $\delta 14.6,26.00,26.05,28.8,29.1,29.3,29.4,29.5,53.4,65.3$, $68.4,111.0,114.4,118.9,121.2,121.3,122.6,127.0,127.7,127.8,128.4,128.8,129.8$, $130.2,132.4,132.7,134.9,136.7,140.6,143.0,144.3,151.6,155.7,163.7,164.8,166.4$.
${ }^{11} \mathrm{~B}-\mathrm{NMR}\left[128.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta-0.1836$

HRMS (ESI) = calc. 892.4301, found $892.4274\left(\mathrm{M}-\mathrm{F}^{-}\right)$.

## Compound 3:

C $(60 \mathrm{mg}, 0.119 \mathrm{mmol})$, $\mathbf{G}(90 \mathrm{mg}, 0.143 \mathrm{mmol})$, dibenzylideneacetone palladium (II) ( $33 \mathrm{mg}, 35.7 \mu \mathrm{~mol}$ ), (2-biphenyl)di-tert-butylphosphine ( $14 \mathrm{mg}, 47.6 \mu \mathrm{~mol}$ ) and potassium carbonate $(49 \mathrm{mg}, 0.357 \mathrm{mmol})$ were mixed in DMF ( 6 ml ) and degassed with argon for 30 mins . The mixture was then heated in a microwave for 5 mins at $65^{\circ} \mathrm{C}(75 \mathrm{~W})$. The DMF was then removed in vacuo and the residue was subjected to column chromatography eluting with $2: 98$ EtOAc:toluene. The residue was precipitated from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with cold MeOH to yield the pure product as a bright red solid ( $48 \mathrm{mg}, 42 \%$ ), m.p. $192-194^{\circ} \mathrm{C}, R_{f}=0.19$ (toluene).
${ }^{1} \mathrm{H}-\mathrm{NMR}$ [400MHz, $\mathrm{CDCl}_{3}$ ] $\delta 0.97\left(6 \mathrm{H}, \mathrm{t}, 2 \times \mathrm{CH}_{3} \mathrm{CH}_{2}, J=7.50 \mathrm{~Hz}\right), 1.33(16 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2}$ 's $+2 \mathrm{x} \mathrm{CH}_{3}$ ), $1.48\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ 's), $1.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ 's), $2.29\left(4 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=\right.$ $7.50 \mathrm{~Hz}), 2.53\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 4.04\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{OPh}, J=6.57 \mathrm{~Hz}\right), 4.35\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{O}, J=\right.$ $6.73 \mathrm{~Hz}), 6.97(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.76 \mathrm{~Hz}), 7.31(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.44 \mathrm{~Hz}), 7.38(2 \mathrm{H}, \mathrm{d}$, Ph-H, $J=8.44 \mathrm{~Hz}$ ), 7.62 ( $2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.76 \mathrm{~Hz}$ ), 7.67 ( $2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.44 \mathrm{~Hz}$ ), 7.73 $(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}), 8.14(4 \mathrm{H}, 2 \mathrm{x} \mathrm{d}, \mathrm{Ph}-\mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left[100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 11.9,12.5,14.6,17.1,26.00,26.03,28.7,29.2,29.3,29.5$, $65.2,68.4,114.4,121.2,122.6,127.0,127.7,128.3,129.1,130.2,132.4,132.7,136.6$, 138.3, 140.3, 144.4, 144.8, 151.6, 153.9, 163.7.
${ }^{11}$ B-NMR $\left[128.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 0.0000$

HRMS $(E S I)=$ calc. 990.4809 , found $900.4798\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

## Compound 4:

$\mathbf{H}$ ( $101 \mathrm{mg}, 0.141 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(29 \mathrm{mg}, 0.041 \mathrm{mmol}), \mathrm{Cu}(\mathrm{I}) \mathrm{I}(8 \mathrm{mg}, 0.041 \mathrm{mmol})$ and triethylamine ( 1 ml ) were mixed in DMF ( 4 ml ) and the mixture was degassed with argon for 30 mins . D ( $40 \mathrm{mg}, 0.137 \mathrm{mmol}$ ) in DMF ( 1.5 ml ) was added to the initial mixture and the resulting mixture was then heated in a microwave at $65^{\circ} \mathrm{C}(75 \mathrm{~W})$ for 5 mins . The DMF was then removed in vacuo and the residue purified by column chromatography eluting with 2\% EtOAc:toluene to yield an orange solid which was then precipitated from dichloromethane with cold methanol to yield the pure product as a bright orange solid ( $44 \mathrm{mg}, 36 \%$ ), $R_{f}=0.11$ (toluene).
${ }^{1} \mathrm{H}-\mathrm{NMR}$ [400MHz, $\left.\mathrm{CDCl}_{3}\right] \delta 1.33\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}{ }_{2} \mathrm{~s}\right), 1.45\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}{ }^{\prime} \mathrm{s}\right), 1.82(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2}$ 's), $4.06\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{OPh}, J=6.57 \mathrm{~Hz}\right), 4.34\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{O}, J=6.72 \mathrm{~Hz}\right), 6.57(2 \mathrm{H}, \mathrm{m}$, Py-H), 6.94 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{Py}-\mathrm{H}$ ), 6.98 ( $2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, ~ J=8.76 \mathrm{~Hz}$ ), 7.32 ( $2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, ~ J=$ $8.76 \mathrm{~Hz}), 7.58(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.44 \mathrm{~Hz}), 7.63(4 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.44 \mathrm{~Hz}), 7.70(6 \mathrm{H}, \mathrm{m}$, Ph-H), 7.96 (2H, m, Py-H), 8.06 (2H, d, Ph-H, $J=8.76 \mathrm{~Hz}$ ), 8.15 ( $2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=$ $9.07 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}-$ NMR $\left[100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 26.00,26.03,28.7,29.3,29.4,29.5,65.4,68.4,91.0,91.3$, $111.0,114.4,118.8,121.2,122.6,127.2,127.7,128.4,129.6,130.4,130.6,131.4,131.6$, 131.7, 132.4, 132.7, 134.0, 144.5, 144.9, 151.6, 163.7, 164.8, 166.0.
${ }^{11}$ B-NMR $\left[128.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta-0.67$.

HRMS $(E S I)=$ calc. 897.4002, found $897.4001\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$.

## Compound 5:

$\mathbf{H}(106 \mathrm{mg}, 0.148 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(30 \mathrm{mg}, 43.2 \mu \mathrm{~mol}), \mathrm{Cu}(\mathrm{I}) \mathrm{I}(8 \mathrm{mg}, 43.2 \mu \mathrm{~mol})$ and triethylamine ( 1 ml ) were mixed in DMF $(4 \mathrm{ml})$ and the mixture was degassed with argon for 30 mins . $\mathbf{E}(50 \mathrm{mg}, 0.144 \mathrm{mmol}$ ) in DMF ( 1.5 ml ) was added to the initial mixture and the resulting mixture was then heated in a microwave at $65^{\circ} \mathrm{C}(75 \mathrm{~W})$ for 5 mins . The DMF was then removed in vacuo and the residue subjected to column chromatography eluting with 1:99 EtOAc:toluene to yield an orange solid which was then precipitated from dichloromethane with cold methanol to yield the pure product as a bright orange solid ( $51 \mathrm{mg}, 38 \%$ ), m.p. $199-200^{\circ} \mathrm{C}, R_{f}=0.47$ (5:95 EtOAc:toluene)..
${ }^{1} \mathrm{H}-\mathrm{NMR}\left[400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 1.33\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}{ }^{\prime} \mathrm{s}\right), 1.43\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.46(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2}$ 's), $1.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ 's), $2.56\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 4.05\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{OPh}, J=6.51 \mathrm{~Hz}\right)$, $4.34\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{O}, J=6.69 \mathrm{~Hz}\right), 5.99(2 \mathrm{H}, \mathrm{s}, \mathrm{Py}-\mathrm{H}), 6.99(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.80 \mathrm{~Hz}), 7.32$ ( $4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}$ ), $7.63(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}), 7.68(4 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{Ph}-\mathrm{H}), 7.74(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=$ 8.25 Hz ), $8.01(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.06 \mathrm{~Hz}), 8.16(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.80 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left[100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 14.6,25.97,26.01,28.7,29.2,29.3,29.5,65.4,68.3,90.0$, $91.4,110.9,114.3,118.9,121.2,121.4,122.6,123.5,127.4,127.7,128.3,129.6,130.2$, 131.5, 132.3, 132.4, 132.7, 136.7, 142.9, 144.9, 151.6, 155.8, 163.7, 166.0.
${ }^{11}$ B-NMR $\left[128.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta-0.2446$.

HRMS $(E S I)=$ calc. 958.4183 , found $958.4174\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

## Compound 6:

$\mathbf{H}(88 \mathrm{mg}, 0.128 \mathrm{mmol}), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(26 \mathrm{mg}, 37.2 \mu \mathrm{~mol}), \mathrm{Cu}(\mathrm{I}) \mathrm{I}(7.2 \mathrm{mg}, 37.2 \mu \mathrm{~mol})$ and triethylamine ( 1 ml ) were mixed in DMF $(4 \mathrm{ml})$ and degassed with argon for 30 mins . $\mathbf{F}$ ( $50 \mathrm{mg}, 0.124 \mathrm{mmol}$ ) in DMF ( 1 ml ) was then added to this solution and the mixture was then heated in a microwave at $65^{\circ} \mathrm{C}(75 \mathrm{~W})$ for 5 mins . The DMF was then removed in vacuo and the residue purified by column chromatography eluting with $0-2 \%$ EtOAc:toluene to yield an orange solid which was then precipitated from dichloromethane with cold methanol to yield the pure product as a bright red solid $(45 \mathrm{mg}$, $38 \%$ ), m.p. $184-185^{\circ} \mathrm{C}, R_{f}=0.4$ (toluene).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left[400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 0.96\left(6 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3} \mathrm{CH}_{2}, J=7.51 \mathrm{~Hz}\right), 1.31\left(16 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}{ }^{\prime} \mathrm{s}+\right.$ $2 \mathrm{x} \mathrm{CH}_{3}$ ), $1.44\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ 's), $1.79\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ 's), $2.27\left(4 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.50 \mathrm{~Hz}\right)$, $2.52\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 4.03\left(4 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{OPh}, J=6.57 \mathrm{~Hz}\right), 4.32\left(4 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{O}, J=6.73 \mathrm{~Hz}\right)$, 6.97 ( $2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=9.07 \mathrm{~Hz}$ ), 7.30 ( $4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}$ ), 7.63 ( $8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}), 7.71$ ( $2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-$ $\mathrm{H}, J=8.76 \mathrm{~Hz}), 8.03(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=8.76 \mathrm{~Hz}), 8.14(2 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J=9.07 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left[100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta 11.2,11.9,13.9,16.4,25.3,28.0,28.0,28.4,28.6,28.7$, $28.8,64.7,67.7,89.2,90.8,110.3,113.7,120.5,121.9,122.7,127.0,127.7,128.0,128.9$, $129.5,130.9,131.7,132.0,132.3,135.7,137.5,150.9,163.1,164.2,165.3$.
${ }^{11}$ B-NMR $\left[128.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right] \delta-0.1836$.

HRMS (ESI) = calc. 1009.5256, found $1009.5259\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$.

Electronic Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is (c) The Royal Society of Chemistry and Owner Societies 2011

## S2: DSC thermograms for compounds 1,2 and 4

## Compound 1:



Electronic Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is (c) The Royal Society of Chemistry and Owner Societies 2011

## Compound 2:



Electronic Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is (c) The Royal Society of Chemistry and Owner Societies 2011

## Compound 4:



Electronic Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is (c) The Royal Society of Chemistry and Owner Societies 2011

## S3: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra for mesogenic BODIPYs (compounds 1-6)

${ }^{1}$ H-NMR spectrum for compound 1 :


Electronic Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is (c) The Royal Society of Chemistry and Owner Societies 2011
${ }^{1}$ H-NMR spectrum for compound 2:


Electronic Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is (c) The Royal Society of Chemistry and Owner Societies 2011
${ }^{1}$ H-NMR spectrum for compound 3:


Electronic Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is (c) The Royal Society of Chemistry and Owner Societies 2011
${ }^{1}$ H-NMR spectrum for compound 4:


Electronic Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is (c) The Royal Society of Chemistry and Owner Societies 2011
${ }^{1}$ H-NMR spectrum for compound 5:


Electronic Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is (c) The Royal Society of Chemistry and Owner Societies 2011
${ }^{1}$ H-NMR spectrum for compound 6:


Electronic Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is (c) The Royal Society of Chemistry and Owner Societies 2011

## S4: HRMS profiles for compounds 1-6

## HRMS (ESI) for compound 1:



Electronic Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is (c) The Royal Society of Chemistry and Owner Societies 2011

## HRMS (ESI) for compound 2:



Electronic Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is (c) The Royal Society of Chemistry and Owner Societies 2011

## HRMS (ESI) for compound 3:



Electronic Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is (c) The Royal Society of Chemistry and Owner Societies 2011

## HRMS (ESI) for compound 4:



Electronic Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is (c) The Royal Society of Chemistry and Owner Societies 2011

## HRMS (ESI) for compound 5:



Electronic Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is (c) The Royal Society of Chemistry and Owner Societies 2011

## HRMS (ESI) for compound 6:



Electronic Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is (c) The Royal Society of Chemistry and Owner Societies 2011

## S5: HPLC traces for compounds 1-6

## HPLC trace for compound 1 (4:1 MeCN: $\mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$ ):



Electronic Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is (c) The Royal Society of Chemistry and Owner Societies 2011

HPLC trace for compound 2 (4:1 $\mathrm{MeCN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ):


Electronic Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is (c) The Royal Society of Chemistry and Owner Societies 2011

HPLC trace for compound 3 (4:1 MeCN: $\mathbf{C H}_{2} \mathrm{Cl}_{2}$ ):


Electronic Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is (c) The Royal Society of Chemistry and Owner Societies 2011

HPLC trace for compound 4 (4:1 $\mathrm{MeCN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ):


Electronic Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is (c) The Royal Society of Chemistry and Owner Societies 2011

HPLC trace for compound 5 (4:1 MeCN: $\mathbf{C H}_{2} \mathrm{Cl}_{2}$ ):


Electronic Supplementary Material (ESI) for Photochemical \& Photobiological Sciences This journal is (c) The Royal Society of Chemistry and Owner Societies 2011

HPLC trace for compound 6 (9:1 MeCN: $\mathbf{C H}_{2} \mathrm{Cl}_{2}$ ):


