Electronic Supporting Information (ESI)

Excited State Dependent Electron Transfer of Re-dppz Intercalator in DNA: A Time-resolved UV-Visible and IR Absorption Investigation into the Photophysics of *fac*-[Re(CO)₃(dppz-F₂)(py)]⁺ Bound to Either [poly(dAdT)]₂ or [poly(dG-dC)]₂

Qian Cao, Caitriona M. Creely, E. Stephen Davies, Joanne Dyer, Timothy Easun, David C. Grills, Sarah Hudson, David A. McGovern, Jonathan McMaster, Jonathan Pitchford, Jayden A. Smith, Xue-Zhong Sun, John M. Kelly and Michael W. George

Estimation of Binding Constants

The intrinsic binding constants, K_b , for the complex bound to $[poly(dGdC)]_2$ and $[poly(dAdT)]_2$ were determined by adding aliquots of the polynucleotide to a buffered solution (50 mM phosphate, pH 7) of known concentration of rhenium and employing using the method described by Yam et al.¹ using the following equation:

$$D/\Delta\varepsilon_{ap} = (D/\Delta\varepsilon) + (\Delta\varepsilon K_b)^{-1}$$

where:

- D is the concentration of the polynucleotide in base pairs, determined spectrophotometrically using molar (phosphate) absorption coefficients of ϵ_{254} = 8400 dm³ mol⁻¹ cm^{-1 2} for [poly(dGdC)]₂ and ϵ_{262} = 6600 dm³ mol⁻¹ cm⁻¹ for [poly(dAdT)]₂³
- $\Delta \varepsilon_{ap} = (\varepsilon_a \varepsilon_f)$, where ε_a is the apparent molar absorption coefficient, obtained from $A_{observed}/[Re]$, and ε_f is the molar absorption coefficient of the free complex
- $\Delta \epsilon = (\epsilon_b \epsilon_f)$, where ϵ_b is the molar absorption coefficient of the fully-bound complex

A linear fit of a plot of $D/\Delta \varepsilon_{ap}$ vs D therefore yields a slope, $1/\Delta \varepsilon$ and y intercept, $(\Delta \varepsilon K_b)^{-1}$ respectively, the ratio of which gives the intrinsic binding constant, K_b .

- 1. Yam, V. W. W., Lo, K. K. W., Cheung, K. K., and Kong, R. Y. C., *J. Chem. Soc., Dalton Trans.*, **1997**, 2067.
- 2. Wells, R. D. et al., J. Mol. Biol., 1970, 54, 465.
- 3. Inman, R. B. et al., J. Mol. Biol., 1962, 5, 172.

Figure S1. UV/vis absorption spectra of *fac*-[Re(CO)₃(dppz-F₂)(py)]⁺ recorded at room temperature in buffered D₂O solution (red trace, 1.51 x 10⁻⁵M) and in the presence of increasing concentrations (black traces) of [poly(dA-dT)]₂, up to [nucleotide]:[Re] \approx 12:1. Also shown is the plot of D/ $\Delta \varepsilon_{ap}$ vs. D for this experiment.

Figure S2. UV/vis absorption spectra of *fac*-[Re(CO)₃(dppz-F₂)(py)]⁺ recorded at room temperature in buffered D₂O solution (red trace, 1.44 x 10⁻⁵M) and in the presence of increasing concentrations (black traces) of [poly(dG-dC)]₂, up to [nucleotide]:[Re] \approx 12:1. Also shown is the plot of D/ $\Delta\epsilon_{ap}$ vs. D for this experiment.

Figure S3. Steady state emission spectra of *fac*-[Re(CO)₃(dppz-F₂)(py)]⁺ ($\lambda_{ex} = 365$ nm) recorded at room temperature in buffered D₂O solution (1.51 x 10⁻⁵ M, red trace) and in the presence of increasing concentrations (black traces) of [poly(dA-dT)]₂, up to [nucleotide]:[Re] \approx 12:1. Spectra are corrected for background (10 mM phosphate buffer in D₂O).