Supplementary Material (ESI) for Photochemical & Photobiological Sciences

This journal is © The Royal Society of Chemistry and Owner Societies 2008

Photodynamic Inactivation of *Penicilliumchrysogenum* Conidia by Cationic Porphyrins

Maria C. Gomes,^{a,b} Sandra M. Woranovicz-Barreira,^{a,c} Maria A. F. Faustino,^a Rosa Fernandes,^d Maria G. P. M. S. Neves,^a Augusto C. Tomé,^a Newton C. M. Gomes,^bAdelaide Almeida,^b José A. S. Cavaleiro,^a Ângela Cunha,^{*b}João P. C. Tomé^{*a}

Electronic Supplementary Information

1- Porphyrinsolubility.

Fig. SI-1 - UV-Vis spectra of porphyrins1 and 2 in DMSO at different concentrations. The insets plot the absorbance at Soret band *versus* concentration of PS.

Electronic Supplementary Material (ESI) for Photochemical and Photobiological Science This journal is © The Royal Society of Chemistry and Owner Societies 2011

Supplementary Material (ESI) for Photochemical & Photobiological Sciences

This journal is © The Royal Society of Chemistry and Owner Societies 2008

Fig. SI-2 - UV-Vis spectra of porphyrins1 and 2 in PBS at different concentrations. The insets plot the absorbance at Soret band *versus* concentration of PS.

2- Fluorescence quantum yields.

$$\Phi_{\Delta}^{sample} = \Phi_{\Delta}^{ref} \frac{AUC^{sample}(1-10^{-Abs}ref)}{AUC^{ref}(1-10^{-Abs}sample)}$$

Equation SI 1

Where AUC is the integrated area under the fluorescence curves of each porphyrinand Abs is the absorbance at the excitation wavelength.