Supporting information

Excited-state properties of chiral [4]helicene cations

Oksana Kel, Petr Sherin, Nathalie Mehanna, Benoit Laleu, Jérome Lacour,* and Eric Vauthey*

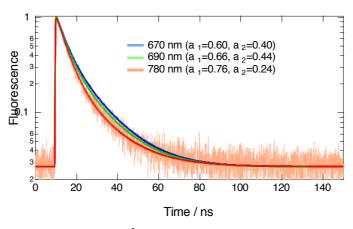
Deparment of physical chemistry and department of organic chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland

Synthesis of HelOH

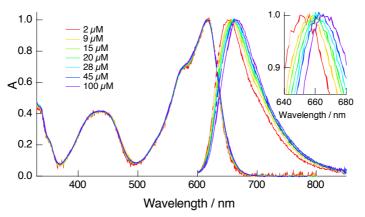
rac-HelOH or *Rac*-5,9-bis-(2-hydroxyethyl)-1,13-dimethoxy-5,9-dihydroquinolino[2,3,4klacridin-13b-vlium tetrafluoroborate salt: At 25 °C, ethanolamine (5.98 g, 98.0 mmol) was added to a solution of tris(2,6-dimethoxyphenyl)carbenium tetrafluoroborate (2.00 g, 3.9 mmol) in NMP (25 mL). The reaction mixture was heated at 110 °C for 1h. Then, NMP and the non-reacted ethanolamine were distilled under reduced pressure (110°C, 15 mmHg). The residual green oil was washed with Et₂O (~25 mL) to afford a precipitate, which was filtered over a Büchner funnel and collected. The titled compound was further purified by (i) dissolution of the crude product in CH₂Cl₂ and (ii) selective precipitation by addition of Et₂O affording the titled compound **1c** (1.68 g. 3.33 mmol, 85%). ¹H NMR (CD₃CN, 400 MHz) δ 8.08 (t, ³J = 8.6 Hz, 1H), 7.86 (t, ³J = 8.3 Hz, 2H), 7.66 (d, ${}^{3}J = 8.6$ Hz, 2H), 7.53 (d, ${}^{3}J = 8.8$ Hz, 2H), 6.89 (d, ${}^{3}J = 8.1$ Hz, 2H), 4.84-4.77 (m, 2H), 4.67-4.59 (m, 2H), 4.13 (m, 4H), 3.71 (s, 6H), 3.31 (s, br, 2H); ¹³C NMR (CD₃CN, 100 MHz) δ 160.5 (C), 143.9 (C), 143.7 (C), 140.3 (C), 137.8 (CH), 137.0 (CH), 120.3 (C), 113.9 (C), 109.0 (CH), 106.7 (CH), 103.9 (CH), 59.3 (CH₂), 56.5 (CH₃), 52.4 (CH₂); m.p. 280 °C; IR 3530, 2947, 1605, 1580, 1500, 1470, 1344, 1254, 1150, 1045, 765; UV/VIS (CH₂Cl₂, 9.91 x 10^{-6} M, λ_{max} (log ε)) 617 (4.26), 442 (3.92), 312 (4.77), 284 (4.48), 262 (4.51), 242 (4.46), 227 (4.57); MS (ESI+, m/z) 417.4.

Rac-5,9-[2-(tert-butyl-dimethyl-silanyloxy)-ethyl]-1,13-dimethoxy-5,9-

dihydroquinolino[2,3,4-*kl*]acridin-13b-ylium tetrafluoroborate salt: Under argon, *rac*-**HelOH** (2.00g, 3.96 mmol, 1 equiv.) was dissolved in 15 mL of dry DMF, in the presence of imidazole (3.24g, 47.6 mmol, 12 equiv.). To this solution, *tert*-butylchlorodimethylsilane (TBSCI) was added (3.59g, 6 equiv.) and the medium was stirred for 24h at 25 °C. The crude mixture was then quenched with water and extracted 3 times with CH₂Cl₂. The aqueous layers were washed with brine, dried with Na₂SO₄, filtered and concentrated *in vacuo*. The blue-green gummy compound collected was then purified by chromatography over silica gel (20 x 0.5 cm, CH₂Cl₂/MeOH 95:5) to afford the titled compound (1.89 g, 65% yield). **m.p.** 227.9-228.5 °C; **R**_f (CH₂Cl₂/MeOH (98:2)) = 0.38; ¹**H NMR** (CD₃CN, 400 MHz) δ 8.09 (t, ³*J* = 8.6 Hz, 1H), 7.84-7.76 (m, 4H), 7.60 (d, ³*J* = 9.1 Hz, 2H), 6.90 (d, ³*J* = 8.1 Hz, 2H), 5.03-4.96 (m, 2H), 4.92-4.82 (m, 2H), 4.32-4.15 (m, 4H), 3.67 (s, 6H), 0.53 (s, 18H), -0.31 (s, 6H), -0.35 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 159.7 (C), 143.0 (C), 139.5 (C), 137.3 (CH), 136.5 (CH), 113.5 (C),108.3 (CH), 106.4 (CH), 103.0 (CH), 60.5 (CH₂), 55.8 (CH₃), 25.8 (CH₃), 5.4 (CH₃); **IR** 3530, 2947, 2896, 2850, 1605, 1580, 1557, 1500, 1470, 1344, 1254, 1150, 1045,813, 765; **UV/VIS** (CH₂Cl₂, 9.55 x 10⁶ M, λ_{max} (log ε)) = 618 (4.10), 445 (3.78), 312 (4.60), 284(4.33); **MS** (ESI+, m/z) 646.0.


(-)-(*R*,*M*)-13b-Methanesulfinyl-*p*-tolyl-1,13-dimethoxy-5,9-bis-[2-(tert-butyl-dimethylsilanyloxy)-ethyl]-9,13b-dihydro-5*H*-5,9-diaza-naphtho-[3,2,1-*de*] anthracene: Synthesized (410 mg, 45% yield) using previously reported conditions^{1,2} starting from 0.2 mmol of the racemic substrate. This diastereomer corresponds to the most eluted fraction (SiO₂ (20 x 0.5 cm), Et₂O/Pentane (60:40), $R_{\rm f}$ (Et₂O) = 0.92). ¹**H NMR** (CDCl₃, 400 MHz) δ 7.19 (dd, ³*J* = 7.8 Hz, ³*J* = 7.6 Hz, 2H), 7.09-7.02 (m, 3H), 6.96 (d, ³*J* = 8.1 Hz, 2H), 6.86 (d, ³*J* = 8.3 Hz, 1H), 6.75 (d, ³*J* = 8.1 Hz, 1H), 6.70 (d, ³*J* = 8.6 Hz, 2H), 6.64 (d, ³*J* = 8.3 Hz, 1H), 6.45 (d, ³*J* = 8.1 Hz, 1H), 6.30 (d, ³*J* = 8.1 Hz, 1H), 4.26-4.21 (m, 2H), 4.13-3.92 (m, 7H), 3.55 (d, ²*J* = 12.1 Hz, 1H), 3.53 (s, 3H), 3.29 (s, 3H), 2.29 (s, 3H), 0.93 (s, br, 18H), 0.11 (s, br, 12H); ¹³C NMR (CDCl₃, 100 MHz) δ 160.4 (C), 157.6 (C), 143.8 (C), 143.6 (C), 142.5 (C), 141.0 (C), 140.1 (C), 138.9 (C), 129.2 (CH), 128.7 (CH), 127.7 (CH), 126.3 (CH), 124.3 (CH), 116.5 (C), 111.4 (C), 110.9 (C), 107.6 (CH), 106.3 (CH), 106.2 (CH), 106.1 (CH), 105.6 (CH), 101.6 (CH), 68.0 (CH₂), 60.3 (CH₂), 59.8 (CH₂), 56.1 (CH₃), 54.7 (CH₃), 49.6 (CH₂), 48.8 (CH₂), 26.1 (CH₃), 21.4 (CH₃), 18.5 (C), 18.4 (C), -5.0 (CH₃), -5.1 (CH₃); **m.p.** 170 °C; **IR** 2950, 2928, 2855, 1614, 1590, 1475, 1460, 1437, 1385, 1360, 1245, 1085, 833, 775, 732; **UV/VIS** (CH₂Cl₂, 1.10⁻⁵ M, λ_{max} (log ϵ)) = 321 (4.24), 287 (4.23), 227 (4.53); **CD** (CH₂Cl₂, 1.10⁻⁵ M, 20 °C) λ ($\Delta\epsilon$) 328 (-49.8), 280 (-20.7), 245 (-38.3); [α]_D²⁰ = -500 (c = 0.080, CH₂Cl₂).

(+)-(*R*,*P*)-13b-Methanesulfinyl-*p*-tolyl-1,13-dimethoxy-5,9-bis-[2-(tert-butyl-dimethylsilanyloxy)-ethyl]-9,13b-dihydro-5H-5,9-diaza-naphtho-[3,2,1-de] anthracene: Synthesized (446 mg, 49% yield) using previously reported conditions^{1,2} starting from 0.2 mmol of the racemic substrate. This diastereomer corresponds to the least eluted fraction (SiO₂ (20 x 0.5 cm), Et₂O/Pentane (60:40 then 80:20), R_f (Et₂O) = 0.60). ¹H NMR (CDCl₃, 400 MHz) δ 7.28 (t, ³J = 8.3) Hz, 1H), 7.08 (t, ${}^{3}J = 8.1$ Hz, 1H), 7.04-6.99 (m, 3H), 6.81 (d, ${}^{3}J = 8.1$ Hz, 2H), 6.76 (d, ${}^{3}J = 8.1$ Hz, 1H), 6.65 (d, ${}^{3}J = 8.3$ Hz, 1H), 6.55 (t, ${}^{3}J = 8.1$ Hz, 2H), 6.49 (d, ${}^{3}J = 8.1$ Hz, 1H), 6.43 (d, ${}^{3}J = 8.3$ Hz, 1H), 4.08-3.84 (m, 9H), 3.83 (s, 3H), 3.80-3.72 (m, 1H), 3.34 (s, 3H), 2.31 (s, 3H), 0.93 (s, 9H), 0.92 (s, 9H), 0.93 (s, 9H), 0.92 (s, 9H), 0.10 (s, 3H), 0.09 (s, 3H), 0.08 (s, 3H), 0.07 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 161.5 (C), 157.5 (C), 143.3 (C), 142.8 (C), 142.3 (C), 140.6 (C), 140.3 (C), 140.0 (C), 129.3 (CH), 129.2 (CH), 127.1 (CH), 126.4 (CH), 124.6 (CH), 116.8 (C), 111.5 (C), 110.9 (C), 107.4 (CH), 106.5 (CH), 105.9 (CH), 105.5 (CH), 105.4 (CH), 102.5 (CH), 67.6 (CH₂), 60.1 (CH₂), 59.8 (CH₂), 56.1 (CH₃), 55.4 (CH₃), 49.6 (CH₂), 48.6 (CH₂), 26.1 (CH₃), 26.0 (CH₃), 21.5 (CH₃), 18.5 (C), 18.4 (C), -5.0 (CH₃), -5.1 (CH₃); m.p. 158 °C; IR 2950, 2928, 2855, 1614, 1590, 1475, 1460, 1385, 1245, 1085, 1037, 833, 775, 732; UV/VIS (CH₂Cl₂, λ_{max} (log ε)) = 321 (4.20), 287 (4.21), 227 (4.54); CD (CH₂Cl₂, 1.10⁻⁵ M, 20 °C) $\lambda(\Delta\epsilon)$ 328 (47.6), 280 (42.1), 250 (45.7), 230 (-64.7); $[\alpha]_D^{20} = +615$ (c = 0.080, CH₂Cl₂).


(-)-(*M*)-HelOH or (-)-(M)-5,9-bis-(2-hydroxyethyl)-1,13-dimethoxy-5,9dihydroquinolino[2,3,4-kl]acridin-13b-ylium trifluoroacetate salt: Trifluoroacetic anhydride (2.3 mL, 16.2 mmol, 50 equiv.) was added at 25 °C, to a solution of the (R,M)-sulfoxyde adduct (0.3 mmol) in dichloromethane (5 mL). The initially colorless solution immediately turned blue-green. After 20 min, concentration in vacuo followed by several washings with Et₂O afforded the crude product which was further purified over basic alumina (CH₂Cl₂/ MeOH: 97/3) to give the desired enantiopure salt (85% yield). $R_f = 0.23$ (CH₂Cl₂/MeOH: 97/3); ¹H-NMR (400 MHz, (CD₃)₂CO) δ 8.12 (t, ${}^{3}J = 8.6$ Hz, 1H), 7.91 (t, ${}^{3}J = 8.6$ Hz, 2H), 7.88 (d, ${}^{3}J = 8.6$ Hz, 2H), 7.77 (d, ${}^{3}J = 8.8$ Hz, 2H), 6.99 (d, ${}^{3}J = 8.1$ Hz, 2H), 5.79-5.29 (s, br, 2H), 5.00-4.92 (m, 2H), 4.81-4.72 (m, 2H), 4.26-4.16 (m, 4H), 3.79 (s, 6H); ¹³C-NMR (100 MHz, $(CD_3)_2CO$) δ 160.4 (C), 143.6 (C), 140.1 (C), 137.7 (CH), 137.1 (CH), 120.0 (C), 113.8 (C), 109.2 (CH), 106.8 (CH), 103.6 (CH), 58.9 (CH₂), 56.1 (CH₃), 52.6 (CH₂); ¹⁹**F** NMR ((CD₃)₂CO, 376 MHz) δ –75.4; **IR** 3365, 2933, 2850, 1682, 1607, 1584, 1557, 1503, 1346, 1266, 1254, 1203, 1174, 1133, 815, 762, 722, 632, 544, 535; CD $(CH_2Cl_2, 1.10^{-5} \text{ M}, 20^{\circ}\text{C}) \lambda(\Delta\epsilon) 626 (-2.5), 458 (5.2), 409 (-4.7), 350 (-42.0), 320 (-19.1), 310$ (34.8), 284 (-91.0), 243 (-18.0); CD (H₂O, 1.10⁻⁵ M, 20 °C) λ ($\Delta\epsilon$) 630 (-2.5), 450 (8.0), 350 (-42.7), 320 (-15.0), 310 (36.1), 280 (-91.2), 243 (-12.7); $[\alpha]_{435}^{20} = -5200$; $[\alpha]_{365}^{20} = -13300$ (c = 5.3.10⁻⁴, CH₂Cl₂); $[\alpha]_{435}^{20} = -5700$; $[\alpha]_{365}^{20} = -14500$ (c = 5.3.10⁻⁴, H₂O); MS (ESI⁺, m/z) 417.3; **MS** (ESI⁻, m/z) 113.4.

(+)-(*P*)-**HelOH** or (+)-(*P*)-5,9-bis-(2-hydroxyethyl)-1,13-dimethoxy-5,9-dihydroquinolino[2,3,4*kl*]acridin-13b-ylium trifluoroacetate salt: Synthesized using the procedure described above starting from (*R*,*P*)-sulfoxyde adduct. **CD** (CH₂Cl₂, 1.10⁻⁵ M, 20 °C) 1 (De) 626 (2.7), 458 (-5.3), 409 (4.8), 350 (42.2), 320 (19.0), 310 (-35.0), 284 (91.4), 243 (18.2); **CD** (H₂O, 1.10⁻⁵ M, 20 °C) 1 (De) 630 (2.4), 450 (-8.2), 350 (43.0), 320 (15.2), 310 (-36.2), 280 (91.0), 243 (12.5); $[\alpha]_{435}^{20} = + 5100$; $[\alpha]_{365}^{20} = + 13000$ (c = 5.3.10⁻⁴, CH₂Cl₂); $[\alpha]_{435}^{20} = + 5500$; $[\alpha]_{365}^{20} = + 14300$ (c = 5.3.10⁻⁴, H₂O).

Spectroscopic Measurements

Figure S1. Normalized time profiles of 10^{-5} M solution of *(rac)*-HelPr in chloroform. A1 and A2 are relative amplitudes of the components with the time constants $\tau_1 = 4.6$ ns and $\tau_2 = 14.8$ ns.

Figure S2. Normalized absorption and emission spectra of various concentrations of *(rac)*-HelPr in chloroform. Inset: same emission spectra in the 640-680 nm region.

Table S1. Time constants and relative amplitudes obtained from the analysis of the fluorescence decay of *(rac)*-HelPr at various concentrations in chloroform.

[(rac)- HelPr]	650 nm		670 nm		690 nm		780 nm	
	$\tau_1/ns(A_1)$	τ_2/ns (A ₂)	$\tau_1/ns(A_1)$	τ_2/ns (A ₂)	τ_1/ns (A ₁)	τ_2/ns (A ₂)	$\tau_1/ns(A_1)$	τ_2/ns (A ₂)
6.3 µM	4.4 (0.40)	14.9 (0.60)	4.7 (0.55)	15.0 (0.45)	4.7 (0.61)	15.0 (0.39)	5.0 (0.73)	15.8 (0.27)
11 µM	4.5 (0.47)	14.8 (0.53)	4.5 (0.62)	14.8 (0.38)	4.7 (0.68)	14.9 (0.32)	4.9 (0.78)	15.8 (0.22)
18 µM	4.6 (0.56)	14.9 (0.44)	4.6 (0.68)	14.8 (0.32)	4.7 (0.73)	14.9 (0.27)	4.9 (0.82)	15.5 (0.18)
26 µM	4.5 (0.60)	14.7 (0.40)	4.6 (0.71)	14.7 (0.29)	4.7 (0.76)	14.9 (0.24)	4.8 (0.83)	15.2 (0.17)

(1) Laleu, B.; Mobian, P.; Herse, C.; Laursen, B. W.; Hopfgartner, G.; Bernardinelli, G.;

(2) Mehanna, N. Ph. D. Thesis, University of Geneva, 2010.

Lacour, J. Angew. Chem. Int. Ed. 2005, 44, 1879.