Studies of the Solvatochromic Emission Properties of *N*-Aroylurea Derivatives I: Influence of the Substitution Pattern

Anna Bergen, Cornelia Bohne,^{*} Denis Fuentealba, Heiko Ihmels,^{*} Tamara C. S. Pace, Michael Waidelich, Chang Yihwa & Jan Willem Bats

SUPPORTING INFORMATION

Table of Contents

Fig. S1	Normalized emission spectra of 2f and 2j in selected solvents.			
	Correlation of the emission maxima of 2f and 2j with the acceptor			
	number of the solvent.	p. 2		
Fig. S2	Normalized emission spectra of 2b in selected solvents. Correlation			
	of the emission maxima of 2b with solvent parameters.			
Fig. S3 Correlation of the emission maxima of $2c$ with the $E_{\rm T}(30)$, Z a				
	Parameters of the solvent.	p. 3		
Table S1	Transient Lifetimes of the Aroylurea Derivatives 2d and 2g in MeCN.	p. 4		
Fig. S4	Transient absorption spectra of 2d and 2g in acetonitrile.			
X-ray diffrac	ction analysis	p. 4		
Table S2	Crystal data and structure refinement details of compounds 2d.	p. 5		
Fig. S5	¹ H- and ¹³ C-NMR spectra of 2b in $CDCl_3$.	p. 6		
Fig. S6	¹ H- and ¹³ C-NMR spectra of $2c$ in CDCl ₃ .			
Fig. S7	¹ H- and ¹³ C-NMR spectra of 2d in $CDCl_3$.	p. 8		

Fig. S13 ¹H- and ¹³C-NMR spectra of 2j in C_6D_6 . p. 14

Fig. S1 A: Normalized emission spectra of **2f** (1) and **2j** (2) (**2f**: $\lambda_{ex} = 300 \text{ nm}$, **2j**: $\lambda_{ex} = 380 \text{ nm}$) in selected solvents (1: cyclohexane; 2: 1,4-dioxane; 3: benzene; 4: DMSO; 5: MeCN; 6: CHCl₃; 7: 2-PrOH; 8: EtOH; 9: MeOH). B: Correlation of the emission maxima (in cm⁻¹) of **2f** (1) and **2j** (2) with the acceptor number of the solvent.

Fig. S2 A: Normalized emission spectra of **2b** ($\lambda_{ex} = 345$ nm) in selected solvents (1: cyclohexane; 2: MeCN; 3: benzene; 4: CHCl₃; 5: EtOH; 6: MeOH). Correlation of the emission maxima (in cm⁻¹) of **2b** with the acceptor number (B) or the $E_T(30)$, Z and DN-parameters (C) of the solvent.

Fig. S3 Correlation of the emission maxima (in cm⁻¹) of **2c** with the $E_T(30)$, Z and DN-parameters of the solvent.

	cond. ^b	$ au_{i}/\mu s$	$\Delta A_{\rm max}$
2d	N ₂	12.7	6.3×10^{-2}
2d	Air	0.2	5.8×10^{-2}
2d	O_2	0.04	5.7×10^{-2}
2g	N_2	5.8	7.1×10^{-2}
2g	Air	0.4	6.0×10^{-2}
2g	O_2	0.1	4.7×10^{-2}

^a **2d**: $c = 10^{-4}$ M, $\lambda_{ex} = 355$ nm; **2g**: $c = 8 \times 10^{-5}$ M, $\lambda_{ex} = 266$ nm; ^b solutions were saturated for 20 min either with nitrogen or oxygen or equilibrated with air.

Fig. S4 Transient absorption spectra of 2d (A: $c = 10^{-4}$ M) and 2g (B: $c = 8 \times 10^{-5}$ M) in acetonitrile.

X-ray diffraction analysis

Single crystals of **2d** were measured on a SIEMENS SMART 1K CCD diffractometer at approx. 171 K. The structure was determined by direct methods using the program SHELXS.¹ Refinement was performed on F^2 values using the program SHELXL-97. Hydrogen atoms were geometrically positioned and were constrained. The crystal data and the structure refinement details are collected in Table S2.

¹ Sheldrick, G. M. Acta Cryst., 2008, A64, 112-122.

Parameter Molecular formula (formula weight) $C_{28}H_{32}N_2O_2$ (428.56 g/mol) Temperature / K 171 (2) Wavelength / Å 0.71073 Crystal system, space group Monoclinic, $P2_1/n$ a = 10.6241 (8) Å $\alpha = 90^{\circ}$ Unit cell *b* = 9.6218 (7) Å $\beta = 93.646 \ (2)^{\circ}$ dimensions *c* = 22.9510 (16) Å $\gamma = 90^{\circ}$ Volume / Å³ 2341.4 (3) Ζ 4 Calculated density /g·cm⁻¹ 1.216 Absorption coefficient / mm⁻¹ 0.076 F (000) 920 $0.55 \times 0.14 \times 0.12$ Crystal size / mm Meausured θ range $1.78 \ge \theta \ge 25.00$ $-12 \ge h \ge 12$ Limiting indices $-11 \ge k \ge 11$ $-27 \geq l \geq 26$ Reflections collected / unique 19491 / 4056 $R_{\rm int}$ 0.164 4056 / 0 / 289 Data / restraints/ parameters Goodness of fit on F^2 1.12 *R* values $[I \ge 2\sigma(I)]$ $R_1 = 0.109; wR_2 = 0.132$ *R* values (all data) $R_1 = 0.237; wR_2 = 0.163$ 0.19 and -0.22 eÅ⁻³ Final Fourier residuals

Table S2 Crystal data and structure refinement details of compound 2d.

Fig. S5 ¹H- and ¹³C-NMR spectra of 2b in CDCl₃.

Fig. S6 ¹H- and ¹³C-NMR spectra of 2c in CDCl₃.

Fig. S8 ¹H- and ¹³C-NMR spectra of 2e in CDCl₃.

Fig. S9 ¹H- and ¹³C-NMR spectra of 2f in CDCl₃.

Electronic Supplementary Material (ESI) for Photochemical & Photobiological Science This journal is O The Royal Society of Chemistry and Owner Societies 2012

Fig. S10 ¹H- and ¹³C-NMR spectra of 2g in CDCl₃.

Fig. S11 ¹H- and ¹³C-NMR spectra of 2h in CDCl₃.

Fig. S12 ¹H- and ¹³C-NMR spectra of 2i in CDCl₃.

Fig. S13 ¹H- and ¹³C-NMR spectra of **2j** in C_6D_6 .