Electronic Supporting Information

Cyclophane-size driving the photochemical behaviour of benzophenone.

Yolanda Vida,^a Ezequiel Perez-Inestrosa^{*a}

^a Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Malaga, Spain. Fax: +34 952133433; Tel: + 34952137565; E-mail: inestrosa@uma.es

Table of Contens

Synthesis and Characterization of 1 and 2	
Materials and Method	1
Synthetic scheme for 1	2
Synthetic scheme for 2	2
Characterization of 1	2
Characterization of 2	5
Photochemical reaction and numbering of the molecules	6
NMR-Spectra	7
¹ H and ¹³ C-NMR of 2,4-Bis[3'-(tosyloxy)benzyloxy]benzophenone	7
¹ H and ¹³ C-NMR of 2,4-Bis[3'-(hydroxyl)benzyloxy]benzophenone (4a)	8
¹ H and ¹³ C-NMR of 2-Hydroxy-4-[3'-(tosyloxy)benzyloxy]benzophenone	9
¹ H and ¹³ C-NMR of 2-Hydroxy-4-[3'-(hydroxy)benzyloxy]benzophenone (4b)	10
¹ H and ¹³ C-NMR of 1	11
¹ H and ¹³ C-NMR of 2	12
¹ H and ¹³ C-NMR of 5	13
¹ H and ¹³ C-NMR of 7	14

Synthesis and Characterization of 1 and 2.

Materials and method

Chemicals were used from commercial sources without any purification. Thin layer chromatography (TLC) was performed on silica gel 60 F 254 (Merck 5719) or on silica gel 60 F 254 (Merck 7747) prepared plates and revealed with a ultra-violet lamp. Column chromatography was carried out on silica gel 60 (40–63 μ m) from Merck (7736) for flash chromatography or silica gel 60 (63–200 μ m) from Merck (7734) for gravity columns.

Absorption spectra were recorded on a Hewlett-Packard 8452A Diode Array Spectrophotometer. Samples for absorption spectra were prepared in spectroscopic grade solvents and adjusted to a linear range response. Emission spectra were recorded in a Jasco FP-750 spectrofluorometer. Samples for emission spectra were prepared in spectroscopic grade solvents and adjusted to a linear range response. No fluorescent contaminants were detected in the wavelength region of experimental interest upon excitation. Fluorescence quantum yields were determined by comparison with 0.1 M quinine sulphate in 0.05 M sulphuric acid as a reference, and corrected for the refractive index of the solvent. The samples were irradiated in an immersion well photo reactor (Pyrex) equipped with a 150 W medium-pressure mercury lamp.

Synthetic scheme and numbering of the molecules

Figure S1. Synthetic scheme for 3,5,8,12-Tetraoxa- 4^4 -benzoyl-1,4,7(1,3),10(1,4)-tetrabenzenacyclododecaphane (1) and numbering of the molecules

Figure S2. Synthetic scheme for 2,5,9-trioxa-1⁴-benzoyl-1,4(1,3),7(1,4)-tribenzenacyclononaphane (2) and numbering of the molecules

Characterization of 1. Assignment of the signals.

Figure S3. Expansion of the ¹H-RMN (CDCl₃, 400 MHz) of 1. In the structure are shown some of nOe effects observed.

Figure S4. ¹H-RMN (400 MHz) spectra of 1 recorded in en C_6D_6 (a), $CDCl_3:C_6D_6$ (9:1) (b) and $CDCl_3$ (c).

Figure S5. NOEDIFF experiments (CDCl₃:C₆D₆ (9:1), 200 MHz) of **1**.

	¹ H-RMN (ppm)	¹³ C-RMN (ppm)	HMBC (J^3) correlations
1 ²	6.70 (s, 1H)	111.4	C-1 ⁴ , C-1 ⁶ , C-2
1^4	6.96 (dd, 1H, <i>J</i> = 7.8, 2.1 Hz)	117.7	$C-1^2$, $C-1^6$
1^{5}	7.20 (m, 3H)	129.5	$C-1^1$, $C-1^3$
1^{6}	6.77 (d, 1H, <i>J</i> = 7.8 Hz)	119.6	C-1 ² , C-1 ⁴ , C-2
4 ²	5.91 (d, 1H, <i>J</i> = 2.1 Hz)	102.3	$C-4^4$, $C-4^6$
4 ⁵	7.30 (m, 3H)	131.7	$C-4^1$, $C-4^3$
4 ⁶	6.45 (dd, 1H, <i>J</i> = 7.8, 2.1 Hz)	103.8	$C-4^2$, $C-4^4$
7^{2}	6.62 (s, 1H)	110.6	C-7 ⁴ , C-7 ⁶ , C-6
7^4	6.84 (dd, 1H, <i>J</i> = 7.8, 2.1 Hz)	116.6	C-7 ² , C-7 ⁶
7 ⁵	7.10 (t, 1H, <i>J</i> = 7.8 Hz)	130.0	C-7 ¹ , C-7 ³
7^6	6.65 (d, 1H, <i>J</i> = 7.8 Hz)	118.3	C-7 ² , C-7 ⁴ , C-6
$10^2 - 10^6$	7.30 (m, 3H)	127.3	C-10 ² ,10 ⁶ , C-10 ⁴ , C-9
$10^3 - 10^5$	7.20 (m, 3H)	125.6	C-10 ³ ,10 ⁵ , C-10 ¹ , C-11
2´, 6´	7.76 (d, 2H, <i>J</i> = 7.8 Hz)	129.7	C-2´, 6´, C-4´, CO
3´, 5´	7.40 (t, 2H, <i>J</i> = 7.8 Hz)	128.1	C-1´, C-3´, 5´
4´	7.51 (t, 1H, <i>J</i> = 7.8 Hz)	132.5	C-2′, 6′
2	4.82 (s, 4H)	69.5	$C-1^2$, $C-1^6$, $C-4^1$
6	4.82 (s, 4H)	70.3	$C-4^3$, $C-7^2$, $C-7^6$
9	5.16 (s, 2H)	68.6	C-10 ² ,10 ⁶ , C-7 ³
11	5.20 (s, 2H)	69.6	C-10 ³ ,10 ⁵ , C-1 ³

Table **S1**. Spectroscopic data of **1** assigned based on the HMQC and HMBC spectra of **1**.

Figure **S6**. Expansion of the ¹H-RMN (CDCl₃, 400 MHz) of **2**. In the structure are shown some of nOe effects observed.

	¹ H-RMN (ppm)	¹³ C-RMN (ppm)	HMBC (J^3) correlations
1^{2}	5.64 (d, 1H, <i>J</i> = 2.4 Hz)	109.9	$C-1^4$, $C-1^6$
1^{5}	7.26 (d, 1H, <i>J</i> = 7.9 Hz)	131.5	C-1 ¹ , C-1 ³ , CO
1^{6}	6.50 (dd, 1H, <i>J</i> = 7.9, 2.4 Hz)	110.5	$C-1^2$, $C-1^4$
4 ²	6.05 (sa, 1H)	117.4	C-4 ⁴ , C-4 ⁶ , C-3
4^4	6.96 (dd, 1H, <i>J</i> = 7.9, 2.4 Hz)	119.7	$C-4^2$, $C-4^6$
4 ⁵	7.20 (t, 1H, <i>J</i> = 7.9 Hz)	129.5	$C-4^1$, $C-4^3$
4 ⁶	6.82 (d, 1H, <i>J</i> = 7.9 Hz)	120.7	C-4 ² , C-4 ⁴ , C-3
7 ² -7 ⁶	6.99 (d, 2H, <i>J</i> = 7.9 Hz)	128.4	C-7 ² , 7 ⁶ , C-7 ⁴ , C-6
7 ³ -7 ⁵	7.04 (d, 2H, <i>J</i> = 7.9 Hz)	129.0	C-7 ³ , 7 ⁵ , C-7 ¹ , C-8
2´, 6´	7.82 (d, 2H, <i>J</i> = 7.9 Hz)	129.8	C-2´, 6´, C-4´, CO
3′, 5′	7.44 (t, 2H, <i>J</i> = 7.9 Hz)	128.1	C-1´, C-3´, 5´
4′	7.55 (t, 1H, <i>J</i> = 7.9 Hz)	132.7	C-2′, 6′
3	4.97 (s, 2H)	69.1	$C-1^1$, $C-4^2$, $C-4^6$
6	5.10 (s, 2H)	73.2	C-4 ³ , C-7 ² , 7 ⁶
8	4.82 (s, 2H)	74.7	C1 ³ , C-7 ³ , 7 ⁵

Table S2. Spectroscopic data of 2 assigned based on the HMQC and HMBC spectra of 2.

Photochemical reaction and numbering of the molecules

Figure S7. Photochemical reaction of 1 and numbering of the molecules

Figure S8. Photochemical reaction of 2 and numbering of the molecules

Figure S9. ¹H-RMN (200 MHz) spectra of **6** recorded in en immediately after solution preparation (a), after 15 minutes (b) and after 1 h (c).

NMR-Spectra

Figure S10. Proton, carbon and SEFT NMR spectra (CDCl₃) of 2,4-Bis[3'-(tosyloxy)benzyloxy] benzophenone

Figure S11. Proton, carbon and SEFT NMR spectra (CDCl₃) of 2,4-Bis[3'-(hydroxyl)benzyloxy] benzophenone (4a)

Figure S12. Proton, carbon and SEFT NMR spectra (CDCl $_3$) of 2-Hydroxy-4-[3'-(tosyloxy)benzyloxy] benzophenone

Figure **S13**. Proton, carbon and SEFT NMR spectra (CDCl₃) of 2-Hydroxy-4-[3'-(hydroxy)benzyloxy] benzophenone (**4b**)

Figure S14. Proton, carbon and SEFT NMR spectra (CDCl₃) of 1

