Electronic supplementary Information for:

Remarkable fluorescence enhancement of benzo[g]chromen-2-ones induced by hydrogen-bonding interactions with protic solvents

Atsushi Kobayashi,^a ToshitadaYoshihara,^b Kazuyuki Takehira,^b Seiichi Uchiyama^c and Seiji Tobita^{*b}

^aATEC, Gunma University, Kiryu, Gunma 376-8515, Japan

^bDepartment of Chemistry and Chemical Biology, Gunma University, Kiryu, Gunma 376-8515, Japan

^cGraduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Corresponding Author's Email: tobita@gunma-u.ac.jp

Fig. S1 Laser energy dependence of the PA signal amplitudes of MBC and MMBC in selected solvents at 293K. The PA signals are displayed in the inset.

Fig. S2 Absorption spectra of (a) MBC and (b) MMBC in *n*-hexane and wavelengths and oscillator strengths (blue line) of S_1 , S_2 and S_3 states calculated with the TD-B3LYP // B3LYP method using the 6-31G (d,p) basis set. Arrows in figures show the calculated wavelengths for the S_3 (n, π^*) state.

Fig. S3 Absorption spectra of (a) MBC and (b) MMBC in *n*-hexane and wavelengths and oscillator strengths (blue line) of S_1 , S_2 and S_3 states calculated with the INDO/S-CI method. Arrows in figures show the calculated wavelength for the $S_2(n,\pi^*)$ state.

Fig. S4 HOMO and LUMO orbitals for (a) MBC and (b) MMBC calculated with the INDO/S-CI method.

State ΔE (kJ mol⁻¹) Transition f Compound λ (nm) MBC S_1 290.5 411.7 0.0124 $55 \rightarrow 56$ 0.6795 $55 \rightarrow 57$ -0.1150 0.0000 S_2 329.2 363.2 $53 \rightarrow 56$ 0.7063 0.1997 S_3 353.7 338.1 $52 \rightarrow 56$ -0.1002 $54 \rightarrow 56$ 0.6275 $55 \rightarrow 57$ -0.1693 55
ightarrow 58-0.2272 MMBC S_1 274.0 436.5 0.0398 $62 \rightarrow 64$ -0.1509 $63 \rightarrow 64$ 0.6682 $63 \rightarrow 65$ -0.1088 306.5 390.2 0.7050 S_2 0.0004 $61 \rightarrow 64$ S_3 324.7 368.3 0.2043 $60 \rightarrow 64$ -0.1235 $62 \rightarrow 64$ 0.6266 $63 \rightarrow 64$ 0.1441 $63 \rightarrow 65$ 0.2023 $63 \rightarrow 66$ 0.1482

Table S1 Excitation energies (ΔE), wavelengths (λ), and oscillator strengths (f) of MBC and MMBC calculated with TD-BLYP/6-31G (d,p)//B3LYP/6-31G (d,p) basis set.

Synthesis of 6,7,8,9-tetrahydro-4-methyl-2H-benzo[g]chromen-2-one

4,5,6,7-Tetrahydro-2-naphthol (4.5 g, 30 mmol) and ethyl acetoacetate (6 ml, 40 mmol) were mixed and H_2SO_4 (Conc. 30 ml) was dropped slowly to the mixture at room temperature. The mixture was stirred for 17h. Then, the reaction mixture was poured into water (300 ml) and the reaction products were precipitated. The products were filtrated and recrystallized from ethanol. The residue was chromatographed on a silica gel using ethyl acetate as an eluent to afford 6,7,8,9-tetrahydro-4-methyl-2*H*-benzo[*g*]chromen-2-one (4.5 g, 21 mmol, 70%); ¹H NMR (300 MHz, DMSO-d₆) δ 7.45 (s,1H), 7.09 (s,1H), 6.23 (s, 1H), 2.82-2.80 (m, 4H), 2.40 (s, 4H), 1.77-1.73 (quin, 4H, *J* = 3 Hz).

Synthesis of 4-methyl-2*H*-benzo[*g*]chromen-2-one (MBC)

6,7,8,9-Tetrahydro-4-methyl-2*H*-benzo[*g*]chromen-2-one (2.14 g, 10 mmol), benzoyl peroxide (2.0 g, 8.3 mmol) and *N*-bromosuccinimide (3.8 g, 21 mmol) were dissolved in CCl₄ (150 ml) at 20 °C. After 1h, potassium acetate (30 g, 0.3 mol) and glacial acetic acid (10 g, 0.1 mol) were add into the solution, and stirred for 5h. Then, the reaction mixture was poured into water (200 ml) and the reaction products were extracted with CHCl₃ (150 ml). The organic layer was washed with water (100 ml), dried over Na₂SO₄ and evaporated to dryness under reduced pressure. The residue was chromatographed on a silica gel using acetyl acetate as an eluent to afford 4-methyl-2*H*-benzo[*g*]chromen-2-one (510 mg, 2.5 mmol, 25%) ; ¹H NMR (300 MHz, CDCl₃) δ 8.10 (s, 1H), 7.96-7.93 (d, 1H, *J* = 9 Hz), 7.89-7.86 (d, 1H, *J* = 9 Hz), 7.72 (s, 1H), 7.60-7.55 (t, 1H, *J* = 7.5 Hz), 7.52-7.47 (t, 1H, *J* = 7.5 Hz), 6.36 (s, 1H), 2.57 (s, 3H).

