Electronic Supplementary Material (ESI) for Photochemical & Photobiological Science This journal is © The Royal Society of Chemistry and Owner Societies 2012

Photochemical & Photobiological Sciences

Cytochrome c-promoted cardiolipin oxidation generates singlet molecular oxygen

Sayuri Miyamoto,*^{*a*} Iseli L. Nantes,^{*b*} Priscila Faria,^{*b*} Daniela C. Bataglioli,^{*a*} Graziela E. Ronsein,^{*a*} Marisa H. G. Medeiros,^{*a*} and Paolo Di Mascio*^{*a*}

^a Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP26077, CEP

05513-970, São Paulo, SP, Brazil.

^b Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia 166, Bairro

Bangu, CEP 09210-170, Santo André, SP, Brazil.

*Email: miyamoto@iq.usp.br; pdmascio@iq.usp.br

Eletronic Supplementary Information

Electronic Supplementary Material (ESI) for Photochemical & Photobiological Science This journal is $^{\odot}$ The Royal Society of Chemistry and Owner Societies 2012

Figure S1. Analysis of CL hydroperoxide content in CL stock solutions. An aliquot of 5 μ l of CL stock solutions [(a) containing 30 % CLOOH; (b) containing 5 % CLOOH; and (c) purified CL] was injected into a HPLC system. The eluent was monitored at 205 nm for CL analysis (A) and at 235 nm for CL(OOH)₁, CL(OOH)₂ and CL(OOH)₃ analysis (B). The peaks corresponding to each compound was integrated and concentrations (mM) were calculated using the following standard curves: CL (y=7×10⁶x+525102, R²=0,9961), CL(OOH)₁ (y=5×10⁶x+5809, R²=0,9996), CL(OOH)₂ (y=4×10⁶x-23605, R²=0,9911) and CL(OOH)₃ (y=1×10⁷x+12704, R²=0,9726). Pure CL hydroperoxide standards were prepared by photooxidation using methylene blue as a photosensitizer and purified by HPLC using the same condition described for CLOOH analysis.

Figure S2. Analysis of unlabeled and ¹⁸O-labeled cardiolipin hydroperoxides by HPLC-MS using electrospray ionization in the negative ion mode. The source temperature was set to 150 °C and the cone voltage was set to 35 V. Aliquots (10 μ l) of purified cardiolipin hydroperoxides (150 – 300 μ M) were injected to the HPLC-MS. CL(OOH)₁ (A), CL(¹⁸O¹⁸OH)₁ (B), CL(OOH)₂ (C), CL(¹⁸O¹⁸OH)₂ (D), CL(OOH)₃ (E) and CL(¹⁸O¹⁸OH)₃ (F).

Electronic Supplementary Material (ESI) for Photochemical & Photobiological Science This journal is © The Royal Society of Chemistry and Owner Societies 2012

Figure S3. Singlet oxygen monomolecular light emission at 1270 nm observed for DHPNO₂. A) Light emission recorded for DHPNO₂ (6.3 mM) thermolysis in D₂O at 37°C. B) Expanded view of the emission signal obtained in the period between 350 - 450 s. The area under the emission signal was integrated and correlated to the amount of singlet oxygen generated. Thermolysis of this endoperoxide yields 59% of singlet oxygen at 5.02×10^{-4} s⁻¹. Considering that thermolysis of a 6.3 mM solution of DHPNO₂ at 37 °C yields 1.9μ M s⁻¹ of singlet oxygen, the integrated area (65212) corresponds to 190 μ M of singlet oxygen. This correlation was used to convert the emission signal to singlet oxygen concentrations.

Figure S4. Visible light emission in the reaction of cyt c (50 μ M) with liposomes containing DMPC:CL (1.7 mM:1.7 mM in 10 mM deuterated phosphate buffer, pH 7.4) in the presence (a) and absence (b) of 9,10-dibromoanthracene sulphonate, DBAS (14 μ M).