The interplay between hydrogen bonding and π - π stacking interactions in the crystal packing of N(1)-thyminyl derivatives, and implications to the photo-chemical $[2\pi+2\pi]$ -cycloaddition of thyminyl compounds

Priscilla Johnston,^a Ekaterina I Izgorodina^b and Kei Saito^{*a,b}

^a Centre for Green Chemistry, Monash University, Wellington Road, Clayton, Australia, 3800; E-mail:kei.saito@monash.edu.

^b School of Chemistry, Monash University, Clayton, Victoria, Australia.

Supplementary Information

Table S1. Geometry parameters of the optimized transition states for the concerted mechanism

		ТА	TS	CA	CS
Acetate	R(HC···C-CH ₃), Å	2.119		2.031	
(3)		2.279		2.291	
	R(HC…C-H), Å		2.109		2.186
	R(H ₃ C-C···C-CH ₃), Å		2.309		2.225
	α(N-C=C··C(=O)), °	17.4	18.3	7.0	12.3
		9.2	5.7	0.1	0.8
Propanoate	R(HC···C-CH ₃), Å	2.082		2.157	
(5)		2.332		2.157	
	R(HC···C-H), Å		2.104		2.150
	$R(H_3C-C\cdots C-CH_3), Å$		2.296		2.275
	α (N-C=C··C(=O)), °	16.4	15.7	54.5	14.5
_		11.5	2.3	9.5	5.4
Propanoic	R(HC…C-CH ₃), Å	2.029		2.178	
acid		2.381		2.178	
(6)	R(HC···C-H), Å		2.243		2.152
	$R(H_3C-C\cdots C-CH_3), Å$		2.222		2.275
	α(N-C=C··C(=O)), °	15.9	12.5	9.6	14.6
		9.6	2.7	9.5	5.4
Propanoamide	$R(HC \cdots C-CH_3), Å$	1.966		2.185	
(7)		2.474		2.185	
	R(HC···C-H), Å		2.096		2.159
	$R(H_3C-C\cdots C-CH_3), Å$		2.301		2.274
	α(N-C=C··C(=O)), °	22.6	15.6	12.0	16.6
		1.1	4.2	12.0	6.8

Figure S1. Examples of B3LYP optimised structures for each type of the four specific interactions as discussed in the paper.

	Acetic	Acetate	Acetamide	PropOate	PropOic	PropAmide
	(2)	(3)	(4)	(5)	(6)	(7)
Ζ	4	4	4	4	4	8
WC HB	4	4	0	4	4	0
Ring-ring	0	0	4	0	0	4
pi-pi stacking	2	2	2	2	2	4
Chain-chain	0	0	4	0	0	8
Chain-ring	4	4	4	0	4	12
Total per unit cell	10	10	14	6	10	28
Number of molecules	8	8	8	8	8	8
Total interactions for 8 molecules	20	20	28	12	20	28

Table S2. Calculated number of interactions occurring in a unit cell and between eight molecules

Table S3. Photo-dimerization and selectivity yields determined by ¹H NMR analysis (in D₆-DMSO) of the products generated from solution-phase and solid-phase irradiations of 7. The ¹H NMR spectra obtained for the irradiated monomer samples were used to determine the percentage conversion of thyminyl units to cyclobutane units, by comparing the integration values of (non-reacted) thyminyl C5-CH₃ methyl protons (δ 1.72 ppm) and (reacted) cyclobutane C5-CH₃ methyl protons (δ 1.19, 1.21, 1.29, 1.43 ppm).

Chemical shift	Solution-phase		Solid-phase					
δ (ppm)	Mol. Equiv.	Specificity	Mol. Equiv	Specificity				
Monomer (7)								
1.72	28.6	NA	1.00	NA				
Dimer								
1.19 (TS)	0.19	8%	1.02	80%				
1.21	0.52	23%	0.09	7%				
1.29	0.59	26%	0.04	3%				
1.43	1.00	43%	0.12	10%				
Cyclobutane yield %	7.4%	NA	56%	NA				

Partial ¹**H NMR spectrum** of the crude photo-products generated from the solution-phase irradiation of **7**.

Electronic Supplementary Material (ESI) for Photochemical & Photobiological Science This journal is O The Royal Society of Chemistry and Owner Societies 2012

¹H NMR spectrum of **6**

¹³C NMR spectrum of **6**


```
Electronic Supplementary Material (ESI) for Photochemical & Photobiological Science This journal is \textcircled{} The Royal Society of Chemistry and Owner Societies 2012
```


Electronic Supplementary Material (ESI) for Photochemical & Photobiological Science This journal is O The Royal Society of Chemistry and Owner Societies 2012

¹³C NMR spectrum of **9**

Partial ¹**H NMR spectrum** of irradiated crystals of **9.** The ¹H NMR spectrum (400 MHz, DMSO) of the crude products was used to determine the percentage conversion of thyminyl units to cyclobutane units, by comparing the integration values of (non-reacted) thyminyl C5-CH₃ methyl protons (δ 1.78 ppm) and (reacted) cyclobutane C5-CH₃ methyl protons (δ 1.24 ppm). Thyminyl conversion = 80.6%.

