Photochemical Properties of Multi-Azobenzene Compounds – Electronic Supplementary Information –

Julia Bahrenburg, Claudia M. Sievers, Jan Boyke Schönborn, Bernd Hartke, Falk Renth, and Friedrich Temps Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, D-24098 Kiel, Germany

Christian Näther

Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 6-7, D-24098 Kiel, Germany

Frank D. Sönnichsen

Otto Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, D-24098 Kiel, Germany

Contents

1. Syntheses	2
1.1. 4-Iodoazobenzene (IAB)	2
1.2. Bis[4-(phenylazo)phenyl]amine (BPAPA)	2
1.3. Tris[4-(phenylazo)phenyl]amine (TPAPA)	3
2. Table of calculated excited states	4
3. NMR measurements	5
3.1. 1 H NMR spectra of TPAPA	5
3.2. 2D-HSQC NMR spectra of TPAPA	6
References	7

1. Syntheses

All commercially available compounds were purchased from Merck, Sigma-Aldrich, Deutero and Lancaster and used without further purification, except for 4-aminoazobenze which was recrystallised from ethanol. Solvents were dried according to standard procedures. Column chromatography was performed with silica gel (0.06-0.20 mm, Roth). All reactions were carried out under an argon atmosphere. NMR spectra were aquired with Bruker AC-200 and Bruker AV-600 spectrometers. MALDI mass spectra were recorded with a Biflex III instrument (Bruker) with 2,5-dihydroxybenzoic acid as matrix (0.5 mg in 1 ml toluene), CI mass spectra were recorded on a MAT 8200 (Finnigan). UV/VIS absorption spectra were taken on a Shimadzu UV-2401 desktop spectrometer.

1.1. 4-Iodoazobenzene (IAB)

3.40 mg (15.2 mmol) 4-iodoaniline were added to a solution of 2.01 g (18.2 mmol) nitrosobenzene in 130 ml glacial acetic acid. The mixture was stirred for 96 h at room temperature. Afterwards the mixture was diluted with 500 ml H₂O and extracted five times with 100 ml CH₂Cl₂ each. The organic layer was washed with brine (2 × 500 ml), dried over Na₂SO₄, filtered and the solvent was removed in vacuo. The product (3.42 g, 11.1 mmol, 72 %) was purified by column chromatography. $R_f = 0.11$ (hexane/ethyl acetate, 200:1). ¹H NMR (200 MHz, 300 K, CDCl₃): $\delta = 7.89$ (d, 2H), 7.85 (d, 2H), 7.65 (d, 2H), 7.50 (m, 3H) ppm.

1.2. Bis[4-(phenylazo)phenyl]amine (BPAPA)

To a solution of 4 ml toluene were added one after the other under stirring 171 mg (0.850 mmol) AAB, 262 mg (0.850 mmol) IAB, 7.7 mg (0.038 mmol) 1,10-phenanthroline, 9.0 mg (0.047 mmol) copper(I)-iodide and 300 mg (2.54 mmol) potassium *tert*-butanolate. The mixture was heated to reflux at 130 °C within 30 min. After 5 h, the mixture was diluted and washed with 500 ml saturated aqueous NaHCO₃ solution, 500 ml diluted HCl and 500 ml H₂O and dried with Na₂SO₄. Evaporation of the solvent yielded the crude orange product which was purified by column chromatography ($R_f = 0.14$, toluene/hexane 2:1) and recrystallisation from a hexane-chloroform mixture (4:1). The reaction yielded 157 mg (416 mmol, 49 %) of the crystalline solid. ¹H NMR (600 MHz, 300 K, CD₃CN): $\delta = 7.92$ (d, J = 8.82 Hz, 4H, 3-H), 7.88 (d, J = 7.27 Hz, 4H, 6-H), 7.64 (s, 1H, NH), 7.56 (t, J = 7.57, 7.57 Hz, 4H, 7-H), 7.50 (t, J = 7.30, 7.30 Hz, 2H, 8-H), 7.36 (d, J = 8.84 Hz, 4H, 2-H) ppm. ¹³C NMR (150 MHz, 300 K, CDCl₃): $\delta = 152.9$ (C-5), 147.6 (C-1), 144.6 (C-4),

130.4 (C-8), 129.1 (C-7), 124.9 (C-3), 122.6 (C-6), 117.8 (C-2) ppm. MS (CI): m/z = 377. Anal. Calcd. for C₂₄H₁₉N₅: C, 76.37; H, 5.07; N, 18.56. Found: C, 76.63; H, 5.61; N, 17.81.

1.3. Tris[4-(phenylazo)phenyl]amine (TPAPA)

173 mg (0.860 mmol) AAB, 800 mg (2.60 mmol) IAB, 6.1 mg (0.030 mmol) 1,10phenanthroline, 9.0 mg (0.047 mmol) copper(I)-iodide and 305 mg (2.58 mmol) potassium *tert*-butanolate were dissolved in 3 ml toluene. The mixture was heated to reflux at 130 °C for 5 h. Afterwards the reaction was quenched by addition of saturated aqueous NaHCO₃ solution (50 ml) and washed with 500 ml water and 500 ml of diluted HCl solution. After drying with Na₂SO₄ and filtration, the solvent was removed in vacuo. The product was purified by column chromatography($R_f = 0.31$, toluene/hexane 2:1) and recrystallisation from a hexane-toluene mixture (5:1). The compound (177 mg, 317 mmol, 37 %) was obtained as red crystals. ¹H NMR (600 MHz, 300 K, CDCl₃): $\delta = 7.91$ (d, 6H, 3-H), 7.91 (d, 6H, 6-H), 7.52 (t, J = 7.54, 7.54 Hz, 6H, 7-H), 7.47 (t, J = 7.28, 7.28 Hz, 3H, 8-H), 7.32 (d, J = 8.82 Hz, 6H, 2-H), 7.36 (d, J = 8.84 Hz, 4H, 2-H) ppm. ¹³C NMR (150 MHz, 300 K, CDCl₃): $\delta = 152.8$ (C-5), 149.0 (C-1 or C-4), 148.9 (C-4 or C-1), 130.8 (C-8), 129.1 (C-7), 124.7 (C-2), 124.5 (C-3), 122.8 (C-6) ppm. MS (MALDI): m/z = 558. Elementary analysis: See Ref. S1.

2. Table of calculated excited states

compound	state	excitation		contribution	oscillator strength	excitation energy
		from	to	%		eV
$AAB^{a)}$	$S_1(n\pi^*)$	HOMO-4	LUMO	90	4×10^{-5}	2.87
	$S_2(\pi\pi^*)$	HOMO	LUMO	91	8×10^{-1}	3.80
BPAPA	$S_1(n\pi^*)$	HOMO-8	LUMO	52	3×10^{-3}	2.82
		HOMO-9	LUMO+1	39		
	$S_2(n\pi^*)$	HOMO-9	LUMO	52	2×10^{-5}	2.82
		HOMO-8	LUMO+1	39		
	$S_3(\pi\pi^*)$	HOMO	LUMO	86	2×10^0	3.05
	$S_4(\pi\pi^*)$	HOMO	LUMO+1	83	9×10^{-2}	3.63
TPAPA	$S_1(n\pi^*)$	HOMO-14	LUMO+1	35	1×10^{-3}	2.81
		HOMO-14	LUMO	32		
		HOMO-14	LUMO+2	21		
	$S_2(n\pi^*)$	HOMO-13	LUMO	60	1×10^{-4}	2.81
		HOMO-13	LUMO+2	24		
	$S_3(n\pi^*)$	HOMO-12	LUMO+1	58	2×10^{-4}	2.81
		HOMO-12	LUMO+2	26		
	$S_4(\pi\pi^*)$	HOMO	LUMO	56	1×10^0	3.07
		HOMO	LUMO+1	28		
	$S_5(\pi\pi^*)$	HOMO	LUMO+1	57	1×10^0	3.08
		HOMO	LUMO	27		
	$S_6(\pi\pi^*)$	номо	LUMO+2	83	2×10^{-3}	3.74

Table S1: Dominant excitations contributing to the lowest $n\pi^*$ and $\pi\pi^*$ excited electronic states of AAB, BPAPA and TPAPA.

^{a)} Excited states for AAB at optimised OM2-MRCISD ground state structure with (8, 8) active space (Ref. S2).

5

3. NMR measurements

3.1. ¹H NMR spectra of TPAPA

Fig. S1: ¹H NMR spectra of TPAPA in CD₃CN at T = 35 °C as function of time after excitation to the photostationary state PSS455 at t = 0.

a) EEE-TPAPA [mdd] b) PSS455 (t = 0) ppu 23 122 6 124 124 8 126 26 28 128 130 130 0 8 8.0 7.5 8.0 7.5 7.0 [ppm] 7.0 [ppm] c) *t* = 8 h d) *t* = 18 h [mdd [ppm -6 ZZZ 77F 52 122 124 124 126 126 128 128 8 8 8.0 7.5 7.0 8.0 7.5 7.0 [ppm] [ppm] e) *t* = 40 h [bpm] f) 2 AB 124 ٨B 126 128 130 7.5 8.0 7.0 [ppm]

3.2. 2D-HSQC NMR spectra of TPAPA

Fig. S2: 2D-HSQC NMR spectra of TPAPA in CD₃CN at T = 35 °C at different times. a) Spectrum of the pure all-E isomer. b) Spectrum of TPAPA in the photostationary state PSS455 (t = 0). c) - e) Spectra after t = 8, 18, and 40 h (red), respectively, together with the spectra in the PSS455 (blue) from panel a) for reference. f) Assignments to the five chemically different proton sites for the all-E isomer identified by the labels 2, 3, and 6 – 8.

The 2D-HSQC spectra for the all-E isomer, for the photostationary state (PSS455), and for three selected times after preparation of the PSS show the coupling of the ¹³C signals on the ordinate with the ¹H resonances of the H atoms bound the C atoms on the abscissa. The assignments for the *EEE*-isomer (Fig. S2a) to the five chemically different sites (labeled 2, 3, 6, 7, 8 in Fig. S2f) could be secured by means of COSY spectra. The key to the assignments for the other isomers was the observed change in the spectrum of the pure *EEE*-isomer in Fig. S2a to the spectrum of the photostationary state PSS455 in Fig. S2b. As can be seen, peaks 6, 7, and 8 show little change in spectral position, because they are associated with the outer aromatic rings that are too far away from the neighboring AB units to respond to their photoisomerisation. In contrast, resonances 2 and 3, which belong to the aromatic rings next to the central amino-N atom, split into several families of cross-peaks arising from the *ZEE-*, *ZZE-*, and *ZZZ*-isomers. The larger number of cross-peaks is due to the fact that the 2,2'- and 3,3'-positions (cf. Fig. S2f) are chemically equivalent only in the *EEE*-isomer, but distinguishable in the mixed photoisomers.

Since the thermal back-isomerisation from the PSS occurs sequentially, the additional cross-peaks could be assigned according to their observed time dependences (Figs. S2c–d). For example, in the spectrum in Fig. S2c shown in red at t = 8 h after preparation of the PSS, which has been superimposed on the spectrum of the PSS given in blue, the cross-peaks belonging to the ZZZ-isomer have virtually decayed to zero and are thereby identified by their blue color. Likewise, the cross-peaks belonging to the ZZE-isomer are reduced to nearly zero after t = 18 h (Fig. S2d). After t = 40 h, (Fig. S2d), the cross-peaks belonging to the ZEE-isomer is left.

References

- S1. T. Takahashi, T. Tanino, H. Ando, H. Nakano and Y. Shirota, Surface relief grating formation using a novel azobenzene-based photochromic amorphous molecular material, tris[4-(phenylazo)phenyl]amine. *Mol. Cryst. Liq. Cryst.*, 2005, 430, 9–14.
- S2. W. Thiel, MNDO program, version 6.1. Max-Planck-Institut f
 ür Kohlenforschung, M
 ülheim an der Ruhr, Germany, 2007.