Electronic Supplementary Information for

Bioluminescent and spectroscopic properties of His–Trp–Tyr triad mutants of obelin and aequorin

Elena V. Eremeeva,^{*a,b,c*} Svetlana V. Markova,^{*a,c*} Ludmila A. Frank,^{*a,c*} Antonie J.W.G. Visser,^{*b*} Willem J.H. van Berkel,^{*b*} and Eugene S. Vysotski^{**a,c*}

^a Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, 660036, Russia

^b Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands

^c Laboratory of Bioluminescence Biotechnology, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia

*Corresponding author: Fax: +7 (391) 243-3400; Tel: +7 (391) 249-4430; E-mail: <eugene.vysotski@gmail.com> or <eugene_vysotski@ibp.ru>

Figure S1. Normalized kinetics of bioluminescence reaction of obelin (A), aequorin (B), and some of their mutants. Bioluminescence decay rate constants shown in Table 2 were calculated by one- ($y = y_0 + ae^{-k_1x}$) or two-exponential ($y = y_0 + ae^{-k_1x} + be^{-k_2x}$) fitting using averaging of 3 decay curves.

Figure S2. Normalized fluorescence spectra of obelin (A), aequorin (B) and their mutants at pH 7.0.