Electronic Supplementary Information for:

Preparation of ketocoumarins as heavy atom-free triplet

photosensitizers for triplet-triplet annihilation upconversion

Dandan Huang, Jifu Sun, Lihua Ma, Caishun Zhang and Jianzhang Zhao*

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology,

Dalian 116024, P. R. China.

E-mail: zhaojzh@dlut.edu.cn Group Website: http://finechem.dlut.edu.cn/photochem

1.0 NMR and HR-MS spectra.

Fig. S1 ¹H NMR of **K0** (CDCl₃, 400 MHz).

Fig. S2 ¹H NMR of **K1** (CDCl₃, 400 MHz).

Fig. S3 ¹H NMR of K2 (CDCl₃, 400 MHz).

Fig. S4 ¹H NMR of **K3** (CDCl₃, 400 MHz).

Fig. S5 ¹H NMR of **K4** (CDCl₃, 400 MHz).

Fig. S6 ¹H NMR of **1** (CDCl₃, 400 MHz).

Fig. S7 ¹³C NMR of **1** (CDCl₃, 100 MHz).

Fig. S8 TOF MS EI of 1.

ppm

Fig. S9 ¹H NMR of **2** (CDCl₃, 400 MHz).

Fig. S10 ¹³C NMR of **2** (CDCl₃, 100 MHz).

ppm

Fig. S11 TOF MS EI of 2.

Fig. S12 ¹H NMR of **3** (CDCl₃, 400 MHz).

ppm

Fig. S13 ¹³C NMR of 3 (CDCl₃, 100 MHz).

Fig. S14 TOF MS EI of 3.

Fig. S15 ¹H NMR of 4 (CDCl₃, 400 MHz).

Fig. S16 ¹³C NMR of **4** (CDCl₃, 100 MHz).

Fig. S17 TOF MS EI of 4.

Fig. S18 ¹H NMR of **5** (CDCl₃, 400 MHz).

Fig. S19 TOF MS EI of 5.

2.0 Photophysical properties of the ketocoumarin compounds.

Fig. S20 Emission spectra of (a) **3**, (b) **4** and (c) **5** in different solutions at the same condition, $c = 1.0 \times 10^{-5}$ M,

25 °C.

Fig. S21 (a) Nanosecond time-resolved transient absorption difference spectra of 2 after pulsed laser excitation $(\lambda_{ex} = 355 \text{ nm}).$ (b) Decay trace of 2 at 445 nm. $c = 1.0 \times 10^{-5}$ M, in deaerated toluene, 25 °C.

Fig. S22 (a) Nanosecond time-resolved transient absorption difference spectra of **3** after pulsed laser excitation $(\lambda_{ex} = 355 \text{ nm}).$ (b) Decay trace of **3** at 445 nm. $c = 1.0 \times 10^{-5}$ M, in deaerated toluene, 25 °C.

Fig. S23 (a) Nanosecond time-resolved transient absorption difference spectra of 4 after pulsed laser excitation $(\lambda_{ex} = 355 \text{ nm}).$ (b) Decay trace of 4 at 445nm. $c = 1.0 \times 10^{-5} \text{ M}$, in deaerated toluene, 25 °C.

Fig. S24 (a) Nanosecond time-resolved transient absorption difference spectra of **5** after pulsed laser excitation $(\lambda_{ex} = 355 \text{ nm})$. (b) Decay trace of **5** at 445 nm. $c = 1.0 \times 10^{-5}$ M, in deaerated toluene, 25 °C.

Fig. S25 Luminescence spectra of (a) **3**, (b) **4** and (c) **5** at RT and 77 K. For **3**, **4** in methyl cyclohexane : methyltetrahydrofuran : iodoethane = 2:1:1 (v/v). For **5**, the measurements were carried out in methanol : ethanol = 1:4 (v/v). $c = 1.0 \times 10^{-5}$ M.

Fig. S26 Absorption spectral change for the photooxidation of DHN using (a) **3**, (b) **4**, (c) **5**, (d) MB and (e) TPP as photosensitizer. c [sensitizer] = 2.0×10^{-5} M, c [DHN] = 2.0×10^{-4} M. In toluene, 20 mW cm⁻², 25 °C.

Fig. S27 Delayed fluorescence decay-profile observed in the TTA upconversion with (a) **2**, (b) **3**, (c) **4**, and (d) **5** as triplet photosensitizer and DPA as the triplet acceptor. Excited at 445 nm and monitored at 410 nm. Under this circumstance the ketocoumarins are selectively excited and the emission is due to the upconverted emission of DPA. In deaerated toluene. c [sensitizers] = 1.0×10^{-5} M; c [DPA] = 1.3×10^{-5} M, 25 °C.

Fig. S28 Upconversion with the (a) compound **2** and (b) compound **5** as triplet sensitizers. *c*[photosensitizers] = 1.0×10^{-5} M. Different concentration of DPA (triplet acceptor) was used. Excited with 445 nm laser (5 mW). In deaerated toluene, 25 °C.

Optimized geometries of 1 (DFT//B3LYP/rb3lyp/6-31g(d))

Charge = 0 Multiplicity = 3			
6137			
0493			
3246			
0297			
4400			
9266			
4637			
9290			
4961			
0369			
9776			
5486			
4739			
4095			
8368			
3363			
6789			
3582			
8836			
3213			
1000			
6955			
5756			
8197			

С	-8.85085198	0.52128443	1.54381123
Н	-8.64185607	-0.77141341	-0.18933373
Н	-9.37264276	0.77673594	-0.53766447
Н	-9.81228025	0.07477000	1.82270982
Н	-8.07149126	0.06616382	2.16320782
Н	-8.89053577	1.58918620	1.78091068
0	0.00009137	-3.36197570	-0.00071273
С	0.00005073	-2.12934868	-0.00040846
С	6.13004767	0.13946493	0.24962817
С	4.89158642	0.66501032	0.69156550
С	3.72496148	-0.06506169	0.52871548
С	3.70227130	-1.33542608	-0.08575093
С	4.93833555	-1.84783579	-0.53610477
С	6.11257265	-1.14423865	-0.38277208
Н	4.81142140	1.63512890	1.16192330
С	2.44697988	-1.98113208	-0.22865827
Н	4.95660230	-2.82048366	-1.02062789
Н	7.02827329	-1.58138897	-0.75719026
С	1.28136955	-1.39308356	0.18609976
С	1.32135482	-0.11777160	0.89555018
Н	2.39533926	-2.95963843	-0.69931670
0	0.39944836	0.44649894	1.44501376
0	2.57225649	0.49636922	0.99732870
Ν	7.30590323	0.82717432	0.43528999
С	7.31309332	2.15681086	1.05525321
С	6.93539380	3.30902608	0.11482081
Н	8.32047746	2.32143515	1.44831601
Н	6.64780776	2.14500656	1.92561396
Н	6.93648761	4.25525031	0.66797604
Н	7.65019764	3.39710528	-0.70968182
Н	5.93860479	3.16787245	-0.31425128
С	8.58489056	0.29552208	-0.04787783
С	8.85249137	0.52088267	-1.54190280
Н	8.64092943	-0.77193299	0.19083140
Н	9.37238796	0.77568315	0.54015336
Н	9.81397584	0.07393246	-1.81990649
Н	8.07350563	0.06623533	-2.16212508
Н	8.89294279	1.58879761	-1.77881599

Optimized geometries of 2 (DFT//B3LYP/ rb3lyp/6-31g(d))

Symbolic Z-matrix:

Charge = 0	Multiplicity =	3	
С	-3.96882700	1.10605300	-0.44825100
С	-2.96249600	0.14007600	-0.57934300
С	-1.62523100	0.51431800	-0.79198800
С	-1.30644400	1.88300000	-0.87553800
С	-2.29181400	2.86302900	-0.74219000
С	-3.60623100	2.47545200	-0.53149000
Н	-0.75034400	-1.48676800	-0.84480200
Н	-3.21391900	-0.91399600	-0.51393000
С	-0.54346500	-0.42194300	-0.91008200
Н	-2.01377500	3.90942500	-0.80868000
С	1.04117400	1.41891600	-1.24959700
С	0.74054200	-0.00476200	-1.06824300
0	-0.02642500	2.29700800	-1.10202400
0	2.11039800	1.89636300	-1.55771900
0	1.60412000	-2.08383400	-1.76351800
С	1.83296700	-1.02691700	-1.17696300
С	8.11194800	-0.70488900	0.60085800
С	6.94384100	-0.05695000	1.07364500
С	5.71103600	-0.34486200	0.51289800
С	5.55264800	-1.26532400	-0.54710900
С	6.72315800	-1.89869200	-1.02232300
С	7.95940300	-1.63403800	-0.47871900
Н	6.97089600	0.67112800	1.87218900
С	4.25049200	-1.46098600	-1.06602900
Н	6.63865400	-2.60728000	-1.84188500
Н	8.82232800	-2.13965200	-0.89041800
С	3.16711000	-0.77200400	-0.57979000
С	3.32515700	0.11875500	0.56479200
Н	4.09381000	-2.15871700	-1.88465500
0	2.44761600	0.68779000	1.17946500
0	4.62762600	0.30313000	1.03208900
Ν	9.33969900	-0.46405400	1.16537400
С	9.49665800	0.52376100	2.24006100
С	9.55707900	1.98218500	1.76775100
Н	10.41838500	0.27284700	2.77245100
Н	8.68486600	0.39235700	2.96367400
Н	9.64546800	2.64875800	2.63315200
Н	10.42204100	2.15125800	1.11876500
Н	8.65663000	2.26341100	1.21310800
С	10.55341700	-1.12044200	0.66455300
С	11.16760200	-0.47082500	-0.58221700
Н	10.33432700	-2.17615100	0.47407300
Н	11.28204400	-1.10776500	1.48018200
Н	12.04889500	-1.03891300	-0.90147300
Н	10.45686300	-0.44823800	-1.41436100

Н	11.48233800 0.55738300 -0.37801900
С	-6.48866300 0.42063200 -0.05173300
С	-7.84635100 0.05730000 0.15945900
С	-8.84600200 1.03490100 0.34253400
С	-8.24654500 -1.29431700 0.19655100
С	-10.17182200 0.68676900 0.54852400
Н	-8.56925500 2.08504600 0.32415300
С	-9.56962100 -1.65347400 0.40136500
Н	-7.49959500 -2.07156500 0.06375800
С	-10.57770400 -0.67173500 0.57817600
Н	-10.89876200 1.47766100 0.68779700
Н	-9.82179000 -2.70667400 0.42574200
Ν	-11.89759300 -1.02318300 0.76738500
С	-12.26693400 -2.42504300 0.88599100
Н	-11.78914600 -2.91112100 1.74951000
Н	-13.34819500 -2.50061200 1.00848800
Н	-11.99197600 -2.98822200 -0.01493000
C	-12.88943100 0.00200500 1.05245600
Н	-12,95905000 0.73028600 0.23427100
Н	-13.86734600 -0.46808100 1.16418800
н	-12.66571400 0 55171700 1 97857300
н	-4 37942700 3 22981900 -0 42844500
C	-5 32,509700 0,73166300 -0,23436000
C	
121.56	1.5 68 1.5
23158	10
34159	15
45151	310
56151	010
66710	51.0
7010	
7 9 1.0 Q	
0 12 2 0	
9 12 2.0 10	
10	12101420
12 14 1.0	13 1.0 14 2.0
12 10 1.0	
15	
15 16 2 (
16 27 1 (
10 2/ 1.0	
1/181.3	22 1.5 32 1.5
10 19 2.0	
19 20 1.3	
20 21 1.3	2 4 1
21222.0	7251.0
22 20 1.0	
2.7)
24 27 24	
24 27 2.0	0 29 1.0
24 27 2.0 25 26	0 29 1.0
24 27 2.0 25 26	0 29 1.0

Optimized geometries of 3 (DFT//B3LYP/ rb3lyp/6-31g(d))

Symbolic Z-matrix: Charge = 0 Multiplicity = 3

С	-2.44465000	1.86302000	-0.31719200
С	-1.50655200	0.86446900	-0.60894200
С	-0.14657700	1.17728400	-0.75613400

С	0.26140900 2.51711800 -0.60669400
С	-0.65801000 3.52690000 -0.31120700
С	-1.99728400 3.20047600 -0.16932200
Η	0.59169100 -0.84035900 -1.15631800
Η	-1.82981900 -0.16558300 -0.72228600
С	0.87127800 0.20264400 -1.03551400
Н	-0.30866200 4.54771800 -0.20099000
С	2.57753600 1.96358000 -1.05319800
С	2.18018900 0.55356300 -1.12117300
0	1.56549100 2.87568200 -0.75744600
0	3.67761700 2.41484000 -1.27231600
0	2.91513900 -1.40284600 -2.20567300
С	3.20426200 -0.50484600 -1.41637400
C	9.41333800 -1.07770000 0.52462400
C	8.28738100 -0.42318100 1.08401800
C	7 05914900 -0 48447000 0 44863200
C	6 86532300 -1 17260100 -0 77056400
C	7 99593000 -1 81013400 -1 33093100
C	9.22654400 -1.76661600 -0.71801800
с ц	8 34559400 0 13636300 2 00705000
C II	5 57210400 1 15406600 1 24277200
С U	7 88280400 2 24107000 2 27101500
п	10.05022500 2.26288700 1.10710600
п С	10.03932300 -2.20288700 -1.19710000
C	4.53200900 -0.4/308100 -0./6023800
C	4./2295900 0.1833/300 0.52/9/000
H	5.38913200 -1.67487100 -2.27991800
0	3.87584500 0.72016900 1.21141400
0	6.01540100 0.15465800 1.05346700
N	10.63124200 -1.06719200 1.15503100
С	10.82587700 -0.33814300 2.41485700
С	11.05265100 1.17090700 2.25534500
Η	11.68901400 -0.78750700 2.91390800
Η	9.96742600 -0.52640300 3.06824900
Η	11.15755400 1.63580700 3.24220500
Η	11.96430100 1.37556100 1.68510300
Η	10.21513100 1.65203300 1.74075400
С	11.80565200 -1.71825300 0.56072700
С	12.51726800 -0.89544700 -0.52113900
Η	11.50959400 -2.69467400 0.16327300
Η	12.50179800 -1.92552700 1.37818200
Н	13.37074600 -1.45929100 -0.91459200
Η	11.84847800 -0.66357100 -1.35607600
Н	12.89184300 0.04945300 -0.11521200
Н	-2.72069800 3.97625700 0.05848700
С	-6.53709800 -2.73896700 -0.22664000
С	-6.02662400 -1.45678600 -0.17051100
С	-6.87661200 -0.34505100 0.05092200
С	-8.27526100 -0.57766400 0.21536600
С	-8.77812100 -1.90315000 0.15409000
С	-7.91765700 -2.96548400 -0.06411500
Η	-5.87217800 -3.58010000 -0.39696000

Н	-4.96247800 -1.28392500 -0.29551200
С	-6.39044900 1.00847900 0.11852100
С	-9.15755000 0.50904400 0.43908500
Н	-8.32717300 -3.96898400 -0.10684100
С	-8.66296900 1.80186200 0.49904500
С	-7.29218000 2.05088400 0.34086900
Н	-9.35531800 2.61899800 0.67100000
Н	-6.92025900 3.06872800 0.39091000
С	-10.22808500 -2.16906700 0.32246800
С	-10.60838300 0.27301600 0.61002100
Ν	-11.05156800 -1.05389800 0.54291700
С	-12.49295700 -1.26606500 0.71771400
Н	-12.68025000 -2.33562500 0.66569300
Н	-12.80952200 -0.86845900 1.68458800
Н	-13.04304400 -0.74414600 -0.06908000
0	-11.41242900 1.17855400 0.80398100
0	-10.69616700 -3.30090200 0.27435300
С	-5.00748100 1.29182700 -0.03707900
С	-3.82419700 1.54721600 -0.16793000

Optimized geometries of 4 (DFT//B3LYP/rb3lyp/6-31g(d))

Symbolic Z-matrix: Charge = 0 Multiplicity = 3 C 1.94055200 1.53977000 -0.28336200 C 0.97303500 0.56480300 -0.55633600

С	-0.38252300 0.91036800 -0.67953800
С	-0.75664800 2.25925100 -0.52653800
С	0.19162600 3.24618900 -0.24834200
С	1.52531200 2.88752200 -0.12890600
Н	-1.17627500 -1.08922500 -1.05886200
Н	1.26896400 -0.47305000 -0.67363800
С	-1.42770800 -0.03908000 -0.93752600
Н	-0.13016200 4.27564100 -0.13362700
С	-3.09261500 1.76142500 -0.93252100
С	-2.73047500 0.34225200 -1.00311700
0	-2.05651900 2.64838600 -0.65678100
0	-4.18692400 2.23752100 -1.13417300
0	-3.51932500 -1.62149700 -2.03773400
C	-3 78151300 -0 69337900 -1 27413200
C	-10.02436900 -0.97331700 0.60099200
C	
C	7 64022200 0 40252000 0 55805100
C	7 47620200 1 20012100 0 65281000
C	-7.47020300 -1.20012100 -0.03381000
C	-8.82522/00 -1./9852100 -1.22208/00
	-9.88046300 -1.89405100 -0.82383700
H	-8.93259900 0.1862//00 2.10443200
C	-6.1/689900 -1.24349800 -1.2144/500
H	-8.52242400 -2.34560800 -2.15418000
Н	-10.71324700 -2.16570200 -1.09450800
С	-5.11335300 -0.60527500 -0.62654700
С	-5.28476900 0.06133100 0.65990500
Η	-6.00847300 -1.77747100 -2.14614200
0	-4.41900500 0.55379500 1.35242000
0	-6.58278700 0.09763100 1.17122000
Ν	-11.25140300 -0.86978100 1.19655100
С	-11.40047800 -0.11803100 2.43691900
Η	-12.44431200 -0.14775300 2.74925800
Н	-11.11111100 0.93284200 2.30782000
С	-12.42379600 -1.49013600 0.59032100
Н	-12.63135900 -1.07827400 -0.40571000
Н	-13.29156400 -1.30117800 1.22233900
Н	2.27179100 3.64523800 0.08507800
С	5.86824700 0.58935400 0.06348900
С	6.34291300 -0.69212000 -0.09210800
С	7.72602200 -0.99238100 0.03029700
С	8.61458200 0.06520300 0.31869100
С	6.80213000 1.68485800 0.36527200
Н	7.63273500 -3.11547200 -0.34094800
Н	5.64523100 -1.49512700 -0.31475300
C	8.28980500 -2.27903500 -0.11764200
C	10.53383700 - 1.41552700 - 0.30664400
C	9.64481000 -2.49448100 0.01339700
C	449584500 0.01834600 0.05581200
C	7.77507500 0.71057000 -0.05501500 3.31556000 1 10547500 0 16102100
C	3.31330000 1.17377300 -0.10103100 0.08063500 0.12105400 0.45611200
U U	7.70002300 -0.12173400 0.43011300
п	10.37302/00 0.74203300 0.07093000

Η 10.03071800 -3.49820900 -0.10945600 0 6.51444500 2.85015300 0.52606800 0 8.14521100 1.34080000 0.47518900 С 12.43981400 -2.96219400 0.26892000 Η 12.24985800 -3.35690400 -0.73784800 Η 12.02696400 -3.66984100 0.99946900 Η 13.51906300 -2.91713900 0.41616400 Η -10.78983700 -0.54646400 3.24200500 Η -12.30185800 -2.57657700 0.49650000 С 12.76995400 -0.50903600 0.72816900 Η 13.79430300 -0.87533200 0.79860100 Η 12.51337300 -0.02699700 1.68053600 Η 12.73214300 0.25232000 -0.06219200 Ν 11.88143100 -1.62687200 0.43910300 121.561.5511.5 231.581.0 341.591.5 4 5 1.5 13 1.0 561.5101.0 6 39 1.0 791.0 8 9 12 2.0 10 11 12 1.0 13 1.0 14 2.0 12 16 1.0 13 14 15 16 2.0 16271.0 17 18 1.5 22 1.5 32 1.5 18 19 2.0 23 1.0 19 20 1.5 31 1.0 20 21 1.5 24 1.5 21 22 2.0 25 1.0 22 26 1.0 23 24 27 2.0 29 1.0 25 26 27 28 1.0 28 30 2.0 31 1.0 29 30 31 32 33 1.0 36 1.0 33 34 1.0 35 1.0 61 1.0 34 35 36 37 1.0 38 1.0 62 1.0

Optimized geometries of 5 (DFT//B3LYP/rb3lyp/6-31g(d))

Symbolic Z-matrix:

Charge = 0) Multiplicity =	3	
С	-2.03204700	3.27986400	0.25958000
С	-2.75659200	2.24532600	-0.34508800
С	-4.16027800	2.26834300	-0.36850700
С	-4.83165400	3.35446200	0.22525300
С	-4.12787300	4.39300800	0.83895500
С	-2.74226800	4.35328600	0.85407900
Н	-4.48211700	0.37508500	-1.41111000
Н	-2.23151100	1.41191900	-0.80126500
С	-4.96634700	1.23116700	-0.94920300
Н	-4.67626200	5.21316100	1.28949400
С	-7.00478300	2.46518900	-0.37019600
С	-6.32312400	1.28147000	-0.90394900
0	-6.19151900	3.43503000	0.20977200
0	-8.19014800	2.70093200	-0.42432600
0	-6.70412600	-0.35615200	-2.55390600

С	-7.11811700 0.16739400 -1.52069500
С	-12.96059300 -2.25052900 0.11827400
С	-11.94170400 -1.60781500 0.86483100
С	-10.76807300 -1.21232200 0.24623800
С	-10.52064000 -1.42930000 -1.12789500
С	-11.53284000 -2.08788400 -1.86250500
С	-12.70734100 -2.49269500 -1.27106100
Н	-12.03890000 -1.41129800 1.92335400
С	-9.29603500 -0.96466200 -1.66235300
Н	-11.37222200 -2.27741700 -2.92040400
Н	-13.44315500 -3.00025400 -1.87979200
C	-8.37606400 -0.29899300 -0.88965400
C	-8.60486000 -0.14431900 0.54265700
н	
0	-7 83323300 0 30370200 1 36500700
0	-9 83048200 -0 60181000 1 02841000
N	14 14075100 2 61222600 0 60862700
IN C	14 40085100 2 26008700 2 12450000
C	-14.40085100 -2.30998700 2.12430000
	-13.80223000 -3.41998900 3.06936300
п	-15.48591000 -2.33349100 2.25089000
H	-14.0313/300 -1.3/193000 2.381/2800
H	-14.00/64200 -3.14345/00 4.109/3000
H	-14.23/46200 -4.40/91400 2.88831500
Н	-12.71761500 -3.49927400 2.94629700
С	-15.18687800 -3.32181400 -0.06177700
С	-14.95089100 -4.82958000 -0.21881900
Η	-15.29506800 -2.84976100 -1.04388600
Η	-16.13383500 -3.15263200 0.45836100
Η	-15.75571300 -5.27094100 -0.81777300
Η	-14.00032500 -5.03780400 -0.72007900
Η	-14.93754900 -5.33103200 0.75402800
Η	-2.18519300 5.15577800 1.32625600
С	2.03240800 3.23265500 0.32006600
С	2.75125300 2.21913700 -0.32559400
С	4.15508100 2.20847500 -0.30602500
С	4.83276500 3.23830600 0.37449500
С	4.13445900 4.25548300 1.02895000
С	2.74847900 4.25027000 0.99957100
Н	4.46470200 0.37999000 -1.46140200
Н	2.22143400 1.42880800 -0.84815400
С	4.95440300 1.19090300 -0.92913100
Н	4.68740900 5.03249100 1.54555700
С	7.00231600 2.33049800 -0.20681900
С	6.30977500 1.20349200 -0.83976800
0	6.19404800 3.28383500 0.40673500
0	8.19452100 2.53587600 -0.20586200
0	6.70927800 -0.31950900 -2.59125400
C	7.09726200 0.11383200 -1.50738700
Ċ	12.75882600 -2.68002900 0.16874600
Ċ	11.74901200 -2.02760100 0.91916500
C	10.61932100 -1.53580900 0.28797000

С	10 42011400 -1 63971200 -1 10708300
C	11 / 3883200 2 27656000 1 85191100
C	12 56079200 2 77619200 1 24940400
	12.309/8200 -2.//818200 -1.24840400
Н	11.82188/00 -1.89310400 1.98922900
C	9.23869800 -1.08390900 -1.65100200
Н	11.32176000 -2.36551800 -2.92858200
Н	13.32254200 -3.24263000 -1.86924500
С	8.31432200 -0.43868500 -0.86604700
С	8.49477500 -0.39078300 0.58063700
Η	9.05339500 -1.14756700 -2.72016500
0	7.71314900 0.03614700 1.40470600
0	9.68041600 -0.93564700 1.07641400
Ν	13.86682500 -3.21382200 0.77677900
С	14.06859700 -3.08697000 2.22560100
С	14.63066100 -1.73368900 2.68017600
Н	14.75285100 -3.88601500 2.52405200
Н	13.12100200 -3.29510200 2.73392200
Н	14.71992900 -1.71786200 3.77234000
н	15 62374800 -1 55595200 -2 25568500
н	13 98052200 -0 90586600 -2 38069500
C	14.92369500 -3.87191800 -0.00135100
C	15 93088600 2 91503400 0 65212000
с ц	14.46108000 4.51125300 0.76031800
и П	15 44840000 4 54680400 0 68064400
п	15.44840900 -4.54089400 0.08004400
п	16.00228400 -3.48342000 -1.23003700
п	15.43519500 -2.20704700 -1.32435300
H	16.4/464/00 -2.33928900 0.10350400
H	2.195/1200 5.03648800 1.50314200
C	0.60815300 3.24502300 0.29840600
C	-0.60789000 3.25880200 0.28050700
121561	5 96 1 5
221501	0
2 3 1.5 0 1	5
541.591	
451.513	1.0
561.510	1.0
6 47 1.0	
791.0	
8	
9 12 2.0	
10	
11 12 1.0	13 1.0 14 2.0
12 16 1.0	
13	
14	
15 16 2.0	
16 27 1.0	
17 18 1.5	22 1.5 32 1.5
18 19 2.0	23 1.0
19 20 1.5	31 1.0
20 21 1.5	24 1.5

```
72
73
74 75 1.0
75 77 2.0 78 1.0
76
77
78
79 80 1.0 87 1.0
80 81 1.0 82 1.0 83 1.0
81 84 1.0 85 1.0 86 1.0
82
83
84
85
86
87 88 1.0 89 1.0 90 1.0
88 91 1.0 92 1.0 93 1.0
89
90
91
92
93
94
95 96 3.0
96
```