Electronic Supplementary Information

Photophysical properties of 5-substituted 2-thiopyrimidines

Victoria Vendrell-Criado, Jose A. Sáez, Virginie Lhiaubet-Vallet, M. Consuelo Cuquerella* and Miguel A. Miranda*

^a Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València, 46022 Valencia, Spain, Fax: +34 963877807; Tel: +34 963877809. E-mail: <u>mmiranda@qim.upv.es</u>; <u>mcuquere@itq.upv.es</u>

Contents	Page number
Table S1 Total energies (in a.u.) for the optimised geometries of S ₀ and T ₁ states of TU, BTU and TT using B3LYP, CAM-B3LYP, ω B97XD, M062X and PBE0 DFT functionals with 6-31+G(d), cc-pVDZ, aug-cc-pVDZ and aug-cc-pVTZ basis sets with solvent effects considered with PCM method.	2
Table S2Cartesian coordinates for the optimised geometries of S_0 and T_1 states of TU, BTU and TT at (U)B3LYP/aug-cc-pVDZ/PCM level.	3-5
Table S3A - Table 3F . Interatomic distances (in angstroms) of the optimised geometries of S ₀ and T ₁ states of TU, BTU and TT using B3LYP, CAM-B3LYP, ω B97XD, M062X and PBE0 DFT functionals with 6-31+G(d), cc- pVDZ, aug-cc-pVDZ and aug-cc-pVTZ basis sets with solvent effects considered with PCM method.	6-11
Table S4A - Table S4ESinglet-singlet and singlet-triplet TD-DFT calculations from the S0optimised geometry of TU at the same computational level.	12-16
Table S5A - Table S5ESinglet-singlet and singlet-triplet TD-DFT calculations from the S0optimised geometry of BTU at the same computational level.	17-21
Table S6A - Table S6ESinglet-singlet and singlet-triplet TD-DFT calculations from the S0optimised geometry of TT at the same computational level.	22-26

Table S1. Total energies (in a.u.) for the optimised geometries of ground-state singlet (S_0) and lowest triplet (T_1) states of 2-thiopyrimidines TU, BTU and TT using different DFT functionals (B3LYP, CAM-B3LYP, ω B97XD, M062X and PBE0) and basis sets (6-31+G(d), cc-pVDZ, aug-cc-pVDZ and aug-cc-pVTZ) with solvent effects considered using PCM method. Note that only (U)B3LYP/aug-cc-pVDZ/PCM geometries and energies are discussed throughout the manuscript.

Sp. Basis set/ DFT (unctional aug-cc-pVDZ B3L YP CAM-B3L YP uB97XD M062X PBE0 6-31+G(d) -737.804185096 -737.640374854 -737.670177942 -737.627349352 -737.27225136 aug-cc-pVDZ -737.8146094 -737.608826626 -737.722424804 -737.02437627 -737.33314850 aug-cc-pVDZ -737.956269217 -737.698826626 -737.81726773 -737.506787103 -737.141825322 T ₁ Basis set/ DFT functional UB3L YP UCAM-B3L YP UwB97XD UM062X UPBE0 6-31+G(d) -737.51892332 -737.55840909 -737.55840929 -737.5564012472 -737.19489877 aug-cc-pVDZ -737.719790530 -737.5584090951 -737.613157183 -737.5524012472 -737.19489877 aug-cc-pVDZ -737.751892332 -737.5754012472 -737.30689307 -737.69057542 -737.30689307 FIbU S Basis set/ DFT functional B3L YP CAM-B3L YP uB97XD M062X PBE0 6-31+G(d) -894.962698820 -894.80946175 -894.8094611542 -894.809615154 -894.809615154 <th>TU</th> <th></th> <th></th> <th></th> <th></th> <th></th>	TU					
T₁ Basis set/ DFT functional UB3LYP UCAM-B3LYP UwB97XD UM062X UPBE0 6-31+G(d) -737.5225859809 -737.553480929 -737.5506787103 -737.6114768 aug-cc-pVDZ -737.719790530 -737.552333776 -737.56265575 -737.554012472 -737.19498177 aug-cc-pVDZ -737.751892332 -737.6963632 -737.613157183 -737.582252437 -737.30689307 TBU -737.6963632 -737.699705595 -737.670567542 -737.30689307 DFT functional DFT functional B3LYP CAM-B3LYP wB97XD M062X PBE0 6-31+G(d) -895.062698936 -894.800913459 -894.80946155 -894.8036371545 -894.33765118 acc-pVDZ -895.0090510139 -894.827693163 -894.927022268 -894.63671545 -894.33765118 aug-cc-pVDZ -895.008455768 -895.085882613 -894.50164252 -894.4306414224 -894.400414224 -894.400414224 -894.45164252 c-pVDZ -894.954599820 -894.777014449 -894.69188918 -894.2507627 -894.73164643 -894.25097627	S ₀ Basis set / DFT functional 6-31+G(d) cc-pVDZ aug-cc-pVDZ aug-cc-pVTZ	B3LYP -737.804185096 -737.831460943 -737.862271802 -737.956269217	CAM-B3LYP -737.640374854 -737.666976242 -737.698826626 -737.698826626	ωB97XD -737.670177942 -737.703236718 -737.729424804 -737.817267733	M062X -737.627349352 -737.675453511 -737.702437627 -737.791805939	PBE0 -737.272251364 -737.306565194 -737.333148505 -737.418253228
TBU So ₀ Basis set/ DFT functional B3L YP CAM-B3L YP wB97XD M062X PBE0 6-31+G(d) -895.062698936 -894.800913459 -894.889464155 -894.863671545 -894.33765118 aug-cc-pVDZ -895.030510139 -894.827693163 -894.927022268 -894.863671545 -894.437776015 aug-cc-pVDZ -895.130769355 -894.868800470 -894.960414224 -894.90414224 -894.41110904 aug-cc-pVTZ -895.267179368 -895.008455768 -895.085882613 -895.028425878 -894.53164252 T ₁ Basis set/ DFT functional UB3L YP UCAM-B3L YP UwB97XD UM062X UPBE0 6-31+G(d) -894.954599820 -894.76327765 -894.481383305 -894.783113868 -894.29948255 aug-cc-pVDZ -895.023214846 -894.758377650 -894.848093673 -894.783113868 -894.42336394 T So ₀ Basis set/ DFT functional B3L YP CAM-B3L YP wB97XD M062X PBE0 6-31+G(d) -777.124778774 -776.935940006 -776.979574313 -776.5927164643 <td< th=""><th>T₁ Basis set / DFT functional 6-31+G(d) cc-pVDZ aug-cc-pVDZ aug-cc-pVTZ</th><th>UB3LYP -737.692916563 -737.719790530 -737.751892332 -737.844684484</th><th>UCAM-B3LYP -737.525859809 -737.552333776 -737.584909651 -737.679663632</th><th><i>U</i>ωB97XD -737.553480929 -737.586265375 -737.613157183 -737.699705595</th><th>UM062X -737.506787103 -737.554012472 -737.582252437 -737.670567542</th><th>UPBE0 -737.161147680 -737.194981776 -737.222763400 -737.306893073</th></td<>	T ₁ Basis set / DFT functional 6-31+G(d) cc-pVDZ aug-cc-pVDZ aug-cc-pVTZ	UB3LYP -737.692916563 -737.719790530 -737.751892332 -737.844684484	UCAM-B3LYP -737.525859809 -737.552333776 -737.584909651 -737.679663632	<i>U</i>ωB97XD -737.553480929 -737.586265375 -737.613157183 -737.699705595	UM062X -737.506787103 -737.554012472 -737.582252437 -737.670567542	UPBE0 -737.161147680 -737.194981776 -737.222763400 -737.306893073
So Basis set / DFT tunctional B3L YP CAM-B3L YP wB97XD M062X PBE0 6-31+G(d) -895.062698936 -894.800913459 -894.889464155 -894.808935272 -894.33765118 aug-cc-pVDZ -895.090510139 -894.827693163 -894.927022268 -894.863671545 -894.33765118 aug-cc-pVDZ -895.130769355 -894.868800470 -894.960414224 -894.960414224 -894.41110904 aug-cc-pVTZ -895.267179368 -895.008455768 -895.085882613 -894.960414224 -894.41110904 aug-cc-pVTZ -895.267179368 -895.008455768 -895.028425878 -894.53164252 T ₁ Basis set/ DFT functional UB3L YP UCAM-B3L YP UwB97XD UM062X UPBE0 -6-31+G(d) -894.981608757 -894.716262776 -894.813883005 -894.785113868 -894.26907627 aug-cc-pVDZ -895.023218486 -894.758377650 -894.848093673 -894.783113868 -894.2984825 cc-pVDZ -895.158471229 -894.896616311 -894.97720 -894.42336394 T1 -5631+G(d) -777.124778774	TBU					
T₁ Basis set/ DFT functional UB3L YP UCAM-B3L YP UwB97XD UM062X UPBE0 6-31+G(d) -894.954599820 -894.690161588 -894.777014449 -894.691889918 -894.22984825 cc-pVDZ -894.981608757 -894.716262776 -894.813883305 -894.745593981 -894.26907627 aug-cc-pVDZ -895.023218486 -894.758377650 -894.848093673 -894.783113868 -894.30377863 aug-cc-pVTZ -895.158471229 -894.896616311 -894.972325689 -894.910836985 -894.42336394 TT - - -776.935940006 -776.979574313 -776.927164643 -776.54420955 cc-pVDZ -777.124778774 -776.962475377 -777.013813894 -776.9993738 -776.58000926 aug-cc-pVDZ -777.184914730 -776.996342210 -777.041496504 -777.005901358 -776.60802383 aug-cc-pVTZ -777.019418664 -776.828080123 -776.869575573 -776.812573948 -776.43937022 Cc-pVDZ -777.019418664 -776.882080123 -776.890371388 -776.812573948 -776.43937022	S₀ Basis set / DFT functional 6-31+G(d) cc-pVDZ aug-cc-pVDZ aug-cc-pVTZ	B3LYP -895.062698936 -895.090510139 -895.130769355 -895.267179368	CAM-B3LYP -894.800913459 -894.827693163 -894.868800470 -895.008455768	ωB97XD -894.889464155 -894.927022268 -894.960414224 -895.085882613	M062X -894.808935272 -894.863671545 -894.960414224 -895.028425878	PBE0 -894.337651186 -894.377760150 -894.411109048 -894.531642526
TT S ₀ Basis set/ DFT functional B3L YP CAM-B3L YP ωB97XD M062X PBE0 6-31+G(d) -777.124778774 -776.935940006 -776.979574313 -776.927164643 -776.54420955 cc-pVDZ -777.151991624 -776.962475377 -777.013813894 -776.976993738 -776.58000926 aug-cc-pVDZ -777.184914730 -776.996342210 -777.041496504 -777.005901358 -776.60802383 aug-cc-pVTZ -777.289748630 -777.103750053 -777.138939798 -777.105396820 -776.70213185 T ₁ Basis set/ DFT functional UB3L YP UCAM-B3L YP UwB97XD UM062X UPBE0 6-31+G(d) -777.019418664 -776.828080123 -776.869575573 -776.812573948 -776.43937022 cc-pVDZ -777.046450968 -776.854611148 -776.903713888 -776.861801355 -776.47490853 aug-cc-pVDZ -777.080618142 -776.889406921 -776.932216885 -776.892071314 -776.50417547 aug-cc-pVTZ -777.184348314 -776.995429449 -777.028501946 -776.990684269 -776.59744500	T ₁ Basis set / DFT functional 6-31+G(d) cc-pVDZ aug-cc-pVDZ aug-cc-pVTZ	UB3LYP -894.954599820 -894.981608757 -895.023218486 -895.158471229	UCAM-B3LYP -894.690161588 -894.716262776 -894.758377650 -894.896616311	UwB97XD -894.777014449 -894.813883305 -894.848093673 -894.972325689	UM062X -894.691889918 -894.745593981 -894.783113868 -894.910836985	UPBE0 -894.229848257 -894.269076275 -894.303778630 -894.423363946
S ₀ Basis set/ DFT functional B3L YP CAM-B3L YP ωB97XD M062X PBE0 6-31+G(d) -777.124778774 -776.935940006 -776.979574313 -776.927164643 -776.54420955 cc-pVDZ -777.151991624 -776.962475377 -777.013813894 -776.976993738 -776.58000926 aug-cc-pVDZ -777.184914730 -776.996342210 -777.041496504 -777.005901358 -776.60802383 aug-cc-pVTZ -777.289748630 -777.103750053 -777.138939798 -777.105396820 -776.70213185 T ₁ Basis set/ DFT functional UB3L YP UCAM-B3L YP UωB97XD UM062X UPBE0 6-31+G(d) -777.019418664 -776.828080123 -776.869575573 -776.812573948 -776.43937022 cc-pVDZ -777.046450968 -776.854611148 -776.903713888 -776.861801355 -776.47490853 aug-cc-pVDZ -777.184348314 -776.995429449 -777.028501946 -776.990684269 -776.59744500	TT					
T ₁ Basis set / DFT functional UB3L YP UCAM-B3L YP UwB97XD UM062X UPBE0 6-31+G(d) -777.019418664 -776.828080123 -776.869575573 -776.812573948 -776.43937022 cc-pVDZ -777.046450968 -776.854611148 -776.903713888 -776.861801355 -776.47490853 aug-cc-pVDZ -777.080618142 -776.995429449 -777.028501946 -776.990684269 -776.59744500	S ₀ Basis set / DFT functional 6-31+G(d) cc-pVDZ aug-cc-pVDZ aug-cc-pVTZ	B3L YP -777.124778774 -777.151991624 -777.184914730 -777.289748630	CAM-B3LYP -776.935940006 -776.962475377 -776.996342210 -777.103750053	ωB97XD -776.979574313 -777.013813894 -777.041496504 -777.138939798	M062X -776.927164643 -776.976993738 -777.005901358 -777.105396820	PBE0 -776.544209555 -776.580009269 -776.608023833 -776.702131850
	T ₁ Basis set / DFT functional 6-31+G(d) cc-pVDZ aug-cc-pVDZ aug-cc-pVTZ	UB3LYP -777.019418664 -777.046450968 -777.080618142 -777.184348314	UCAM-B3LYP -776.828080123 -776.854611148 -776.889406921 -776.995429449	Uw B97XD -776.869575573 -776.903713888 -776.932216885 -777.028501946	UM062X -776.812573948 -776.861801355 -776.892071314 -776.990684269	UPBE0 -776.439370227 -776.474908530 -776.504175476 -776.597445008

Table S2. Cartesian coordinates of the optimised geometries of the ground-state singlet (S₀) and lowest triplet (T1) states of 2-thiopyrimidines TU, BTU and TT at (U)B3LYP/aug-ccpVDZ/PCM level.

TU S₀ E(RB3LYP) = -737.862271802 a.u.

C	0 0000000	0 00000000	0 00000000
0	0.0000000	0.00000000	0.00000000
Ν	0.00000000	0.00000000	1.41072200
С	1.08540600	0.00000000	2.23981100
Ν	2.28765600	0.00002800	1.58954200
С	2.41233000	0.00003800	0.22131600
С	1.32465700	0.00002700	-0.58788500
S	0.96276600	0.00002400	3.92047500
0	-1.06976000	0.00001400	-0.60500900
Н	3.43289600	0.00006100	-0.15434500
Н	-0.91125900	0.00000100	1.85854900
Н	3.11542900	0.00004500	2.17308300
Н	1.42136400	0.00004200	-1.66930100

TU T₁ E(UB3LYP) = -737.751892332 a.u.

N	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	1.36719900
С	1.33207400	0.00000000	2.01057500
С	2.50693100	-0.22822000	1.23849300
Ν	2.28385100	-0.40865800	-0.15079500
С	1.07861900	-0.20085300	-0.79352500
0	3.66721700	-0.28503500	1.67388000
S	0.94180900	-0.22680800	-2.48309700
Н	1.43188900	0.18805100	3.07606300
Н	-0.92575800	0.23793000	1.87556700
Н	3.10172600	-0.53507700	-0.73443200
Н	-0.87720700	0.13203900	-0.49455900

BTU S₀ E(RB3LYP) = -895.130769355 a.u.

Ν	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	1.36234800
Ν	1.24732400	0.00000000	1.90337200
С	2.40606200	0.00000000	1.15851900
С	2.41924300	0.00000000	-0.20237000
С	1.11211300	0.00000000	-0.86819400
S	-1.40990700	0.00000000	2.29269700
С	3.71248000	0.00000000	-1.02454400
С	4.95244900	-0.00002200	-0.11131000
0	0.89672000	0.00000500	-2.07830100
С	3.76430300	-1.26720800	-1.91060200
С	3.76432100	1.26723300	-1.91056700
Н	3.30980400	0.00000000	1.75870300
Н	-0.90727800	0.00000000	-0.45530200
Н	1.30397800	0.00000000	2.91441600
Н	3.75071500	2.17491200	-1.29156200
Н	4.69470100	1.26834200	-2.49506700
Н	2.91956300	1.30555300	-2.60590600
Н	5.85577900	-0.00002100	-0.73432800
Н	4.99253500	0.89225700	0.52872700
Н	4.99251800	-0.89231800	0.52870600

Н	3.75066500	-2.17490600	-1.29162400
Н	2.91955500	-1.30548900	-2.60595600
Н	4.69469200	-1.26832300	-2.49508900

BTU T₁ E(UB3LYP) = -895.023218486 a.u.

С	0.0000000	0.00000000	0.00000000
С	0.00000000	0.00000000	1.43623000
Ν	1.28701800	0.00000000	2.05278700
С	2.46398300	0.33087700	1.42238200
Ν	2.42477400	0.27775100	0.06869100
С	1.33294000	-0.09917700	-0.67244500
0	-0.98915600	-0.00074500	2.18502000
S	3.87634400	0.72519300	2.26317200
С	-1.28520700	0.11028900	-0.80151600
С	-2.16147800	-1.14053400	-0.51048900
С	-2.05890000	1.39245200	-0.39905600
С	-1.01262500	0.16550700	-2.31820600
Н	1.46377400	-0.10452000	-1.74495300
Н	1.28133300	0.06274600	3.06381200
Н	3.30213800	0.47624200	-0.40185100
Н	-1.45963800	2.28866200	-0.60925000
Н	-2.98414900	1.45570300	-0.98829700
Н	-2.31935300	1.38374400	0.66367100
Н	-1.96992200	0.24093500	-2.84936900
Н	-0.40900300	1.04002400	-2.59455100
Н	-0.50560400	-0.73926300	-2.67890400
Н	-1.63552000	-2.06134800	-0.79616000
Н	-2.42698400	-1.19950300	0.54943400
Н	-3.08336100	-1.07508600	-1.10525100

TT S₀ E(RB3LYP) = -777.184914730 a.u.

0.00000000	0.00000000	0.00000000
0.00000000	0.00000000	1.40711100
1.08481100	0.00000000	2.23619100
2.27863600	0.00000900	1.58221100
2.40112000	0.00000800	0.20953100
1.32277300	-0.00000200	-0.61584100
0.95991800	0.00001200	3.92048800
1.42602000	-0.00000300	-2.11247000
-1.07135000	-0.00000500	-0.60349900
3.42433000	0.00001600	-0.15942200
2.47478500	0.00000500	-2.43052800
0.92920400	-0.88360900	-2.53731200
0.92919000	0.88359300	-2.53731600
-0.91205000	-0.00000400	1.85302300
3.11034300	0.00001600	2.15983000
	0.0000000 0.0000000 1.08481100 2.27863600 2.40112000 1.32277300 0.95991800 1.42602000 -1.07135000 3.42433000 2.47478500 0.92920400 0.92919000 -0.91205000 3.11034300	0.00000000.00000000.00000000.00000001.084811000.00000002.278636000.00009002.401120000.00008001.32277300-0.00002000.959918000.000012001.42602000-0.00000300-1.07135000-0.00005003.424330000.000016002.474785000.00005000.92920400-0.883609000.929190000.88359300-0.91205000-0.000016003.110343000.00001600

TT T₁ E(UB3LYP) = -777.080618142 a.u.

N	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	1.37184800
С	1.33255800	0.00000000	2.03824200
С	2.49835700	-0.24819500	1.25067400
Ν	2.26952800	-0.44330000	-0.13862200
С	1.07740500	-0.23234600	-0.79159300
С	1.40207400	0.25084500	3.49400400

0	3.66468300	-0.31761000	1.67194400
S	0.94635100	-0.28075100	-2.47626300
Н	-0.90710400	0.32330900	1.86987800
Н	3.08889700	-0.59316800	-0.71425700
Н	-0.87398500	0.14478100	-0.49521200
Н	0.79210100	-0.49246300	4.03811200
Н	2.43190900	0.21761600	3.86010400
Н	0.95744500	1.23281900	3.73554300

Table S3A. Interatomic distances (in angstroms) of the optimised singlet ground-state (S_0) geometries of TU at different DFT levels (solvent effects considered using PCM method). See manuscript for atom numbering.

TU S₀				
	B3LYP/	B3LYP/	B3LYP/	B3LYP/
	6-31+G(d)	cc-pVDZ	aug-cc-pVDZ	aug-cc-pVTZ
C4=0	1.23081	1.22296	1.22899	1.22205
C4-N3	1.41104	1.41534	1.41072	1.40676
N3-C2	1.36727	1.36559	1.36583	1.36019
C2=S	1.68020	1.68265	1.68513	1.67550
C2-N1	1.36809	1.36902	1.36684	1.36155
N1-C6	1.3/42/	1.37402	1.37389	1.36865
05=05	1.35510	1.35502	1.35567	1.34659
C5-H	1.08191	1.08762	1.08573	1.07684
05-04	CAM_D2I VD/	CAM_D2I VD/	CAM_B2LVD/	CAM_D2I VD/
	6-31±G(d)	cc-nVDZ	aug-cc-nVD7	aug-cc-nVTZ
C4=0	1 22464	1 21675	1 22296	1 21612
C4-N3	1.40235	1.40644	1.40190	1.39794
N3-C2	1.36069	1.35902	1.35924	1.35370
C2=S	1.67341	1.67553	1.67837	1.66893
C2-N1	1.35898	1.36012	1.35782	1.35255
N1-C6	1.37246	1.37219	1.37206	1.36697
C6=C5	1.34678	1.34681	1.34747	1.33834
С5-Н	1.08115	1.08687	1.08505	1.07628
C5-C4	1.44645	1.45134	1.44717	1.44226
	ωB97XD/	ωB97XD/	ωB97XD/	ωB97XD/
	6-31+G(d)	cc-pVDZ	aug-cc-pVDZ	aug-cc-pVTZ
C4=0	1.22398	1.21692	1.22242	1.21545
C4-N3	1.40445	1.40842	1.40429	1.40059
N3-C2	1.36151	1.35972	1.35949	1.35427
C2=S	1.67486	1.67808	1.68104	1.67155
C2-N1	1.36023	1.36094	1.35857	1.35367
N1-C0	1.37252	1.37243	1.37238	1.30720
C0=C3	1.04044	1.04009	1.04904	1.34040
C5-C4	1.00130	1.00000	1.00510	1.07039
00 04	M062X/	M062X/	M062X/	M062X/
	6-31+G(d)	cc-pVDZ	aug-cc-pVDZ	aug-cc-pVTZ
C4=0	1.22130	1.21491	1.22011	1.21487
C4-N3	1.40526	1.40820	1.40503	1.40099
N3-C2	1.36136	1.35995	1.35989	1.35631
C2=S	1.67314	1.67551	1.67846	1.66866
C2-N1	1.36031	1.36139	1.35936	1.35565
N1-C6	1.37314	1.37240	1.37261	1.36890
C6=C5	1.34871	1.34892	1.34951	1.34129
С5-Н	1.08123	1.08613	1.08451	1.07675
C5-C4	1.45035	1.45398	1.45094	1.44624
				PBE0/
C4-0	1 22520	1 21864	1 22420	1 21864
C4=0	1.22329	1.21004	1.22430	1.21004
N3-C2	1.36048	1.35873	1.35895	1.35873
C2=S	1.67027	1.67327	1.67576	1.67327
C2-N1	1.36136	1.36183	1.36006	1.36183
N1-C6	1.36728	1.36730	1.36732	1.36730
C6=C5	1.35182	1.35168	1.35248	1.35168
С5-Н	1.08206	1.08727	1.08574	1.08727
		4 4 4 0 0 0	4 44500	4 4 4 0 0 0

Table S3B. Interatomic distances (in angstroms) of the optimised lowest triplet state (T_1) geometries of TU at different DFT levels (solvent effects considered using PCM method). See manuscript for atom numbering.

TU T ₁				
	UB3LYP/	UB3LYP/	UB3LYP/	UB3LYP/
	6-31+G(d)	cc-pVDZ	aug-cc-pVDZ	aug-cc-pVTZ
C4=0	1.24216	1.23437	1.24059	1.23376
C4-N3	1.42097	1.42404	1.41861	1.41317
N3-C2	1.38226	1.37893	1.38162	1.37841
C2=S	1.68752	1.69177	1.69530	1.68773
C2-N1	1.35623	1.35681	1.35405	1.34776
N1-C6	1.37382	1.37466	1.36720	1.35646
C6=C5	1.48149	1.48530	1.47931	1.46994
С5-Н	1.08257	1.08875	1.08655	1.07706
C5-C4	1.42305	1.42765	1.42425	1,41888
	UCAM-B3LYP/	UCAM-B3LYP/	UCAM-B3LYP/	UCAM-B3LYP/
	6-31+G(d)	cc-pVDZ	aug-cc-pVDZ	aug-cc-pVTZ
C4=0	1.23308	1.22589	1.23197	1.22560
C4-N3	1.40850	1.41202	1.40792	1.40404
N3-C2	1.37594	1.37306	1.37350	1.36881
C2=S	1.66840	1.67238	1.67370	1.66420
C2-N1	1.35614	1.35680	1.35491	1.34905
N1-C6	1.37683	1.37713	1.37498	1.36731
C6=C5	1.49000	1.49218	1.49049	1.48313
С5-Н	1.08245	1.08883	1.08662	1.07738
C5-C4	1.42499	1.42899	1.42473	1.41848
	UωB97XD/	UωB97XD/	UωB97XD/	UωB97XD/
	6-31+G(d)	cc-pVDZ	aug-cc-pVDZ	aug-cc-pVTZ
C4=0	1.23204	1.22565	1.23096	1.22447
C4-N3	1.41082	1.41427	1.41080	1.40686
N3-C2	1.37745	1.37460	1.37456	1.37003
C2=S	1.66964	1.67440	1.67588	1.66643
C2-N1	1.35807	1.35843	1.35677	1.35132
N1-C6	1.37735	1.3///2	1.3/5/6	1.36815
	1.49100	1.49306	1.49198	1.48523
	1.00277	1.06924	1.00701	1.07769
65-64	1.42727	1.43130	1.42/40	1.42100
	6-31+G(d)		aug.cc.nVD7	200002X/
C4-0	1 22865	1 22232	1 22800	1 22271
C4-N3	1 41278	1 41515	1 41228	1 40788
N3-C2	1.37969	1.37790	1.37747	1.37440
C2=S	1.66785	1.67163	1.67333	1.66375
C2-N1	1.35762	1.35793	1.35677	1.35233
N1-C6	1.37568	1.37569	1.37329	1.36853
C6=C5	1.48997	1.49120	1.49037	1.48534
С5-Н	1.08220	1.08838	1.08595	1.07777
C5-C4	1.43121	1.43544	1.43115	1.42611
	UPBE0/	UPBE0/	UPBE0/	UPBE0/
	6-31+G(d)	cc-pVDZ	aug-cc-pVDZ	aug-cc-pVTZ
C4=0	1.23406	1.22775	1.23354	1.22740
C4-N3	1.40911	1.41198	1.40871	1.40455
N3-C2	1.37619	1.37334	1.37375	1.36973
C2=S	1.67226	1.67658	1.67822	1.66985
C2-N1	1.35268	1.35298	1.35131	1.34575
N1-C6	1.37018	1.37109	1.36853	1.36064
C6=C5	1.48246	1.48472	1.48231	1.47594
С5-Н	1.08304	1.08898	1.08709	1.07929
C5-C4	1.42496	1.42836	1.42475	1.41983

Table S3C. Interatomic distances (in angstroms) of the optimised singlet ground-state (S_0) geometries of BTU at different DFT levels (solvent effects considered using PCM method). See manuscript for atom numbering.

BTU S₀				
	B3LYP/	B3LYP/	B3LYP/	B3LYP/
	6-31+G(d)	cc-pVDZ	aug-cc-pVDZ	aug-cc-pVTZ
C4=0	1,23088	1,22654	1,22913	1,22214
C4-N3	1,41135	1,41174	1,41087	1,40693
N3-C2	1,36380	1,36405	1,36235	1,35675
C2=S	1,68411	1,68501	1,68920	1,67966
C2-N1	1,36103	1,36231	1,35960	1,35423
N1-C6	1,37763	1,37709	1,37749	1,37240
C6=C5	1,36056	1,36091	1,36095	1,35228
C5-C(CH₃)₃	1,53342	1,53346	1,53246	1,52855
C5-C4	1,46651	1,46940	1,46694	1,46273
	CAM-B3LYP/	CAM-B3LYP/	CAM-B3LYP/	CAM-B3LYP/
	6-31+G(d)	cc-pVDZ	aug-cc-pVDZ	aug-cc-pVTZ
C4=0	1,22473	1,2203	1,22305	1,21617
C4-N3	1,4026	1,40305	1,40209	1,39825
N3-C2	1,35743	1,35775	1,35601	1,35049
C2=S	1,67743	1,67789	1,68246	1,67314
C2-N1	1,35205	1,35357	1,35072	1,34538
N1-C6	1,37607	1,37546	1,37583	1,37092
C6=C5	1,35128	1,35176	1,351/4	1,34304
C5-C(CH ₃) ₃	1,52665	1,52669	1,52569	1,52168
C5-C4	1,46316	1,46599	1,46356	1,45949
	$\omega B9/XD/$	$\omega B9/XD/$	$\omega B9/XD/$	$\omega B97XD/$
64.0	0-31+G(0)	CC-DVDZ	aug-cc-pvDZ	aug-cc-pviz
C4=0	1,22427	1,22016	1,22279	1,21592
64-IN3	1,40410	1,40301	1,40300	1,40009
N3-02	1,30020	1,30000	1,55054	1,55110
$C_2=3$	1,07000	1,00072	1,00001	1,07001
N1-C6	1,3332	1,33423	1,33132	1,34032
C6-C5	1,37300	1,37341	1,37371	1,3707
C5-C(CH.)	1,55505	1,55783	1,55574	1,5455
C5-C4	1 46454	1 46754	1 46536	1 46153
00 04	M062X/	M062X/	M062X/	M062X/
	6-31+G(d)	cc-nVDZ	aug-cc-nVDZ	aug-cc-nVTZ
C4=0	1.22193	1.21824	1.22279	1.21538
C4-N3	1.40475	1,40489	1,40388	1,40085
N3-C2	1.35883	1.35901	1.35634	1.35365
C2=S	1,67712	1,6782	1,68502	1,67258
C2-N1	1,35379	1,35508	1,35151	1,34894
N1-C6	1,3768	1,37577	1,37571	1,37276
C6=C5	1,35343	1,35408	1,35374	1,34635
C5-C(CH ₃) ₃	1,52322	1,52317	1,52691	1,51935
C5-C4	1,46603	1,46813	1,46537	1,4626
	PBE0/	PBE0/	PBE0/	PBE0/
	6-31+G(d)	cc-pVDZ	aug-cc-pVDZ	aug-cc-pVTZ
C4=0	1,22576	1,22205	1,22483	1,2183
C4-N3	1,40277	1,4031	1,40235	1,39875
N3-C2	1,35752	1,35739	1,35606	1,3511
C2=S	1,674	1,67561	1,67951	1,67054
C2-N1	1,35476	1,35561	1,35341	1,34863
N1-C6	1,37053	1,37013	1,37064	1,36591
C6=C5	1,35711	1,3574	1,35758	1,34983
C5-C(CH ₂) ₂	1 52288	1 50201	1 52226	1 51000
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,52200	1,52521	1,52250	1,51622

Table S3D. Interatomic distances (in angstroms) of the optimised lowest triplet state (T_1) geometries of BTU at different DFT levels (solvent effects considered using PCM method). See manuscript for atom numbering.

BTU T ₁				
	UB3LYP/	UB3LYP/	UB3LYP/	UB3LYP/
	6-31+G(d)	cc-pVDZ	aug-cc-pVDZ	aug-cc-pVTZ
C4=0	1,24178	1,23729	1,24061	1,23381
C4-N3	1,42800	1,42778	1,42708	1,42325
N3-C2	1,37806	1,37783	1,37555	1,37084
C2=S	1,68445	1,68829	1,69032	1,68073
C2-N1	1,35694	1,35681	1,35530	1,34957
N1-C6	1,37525	1,37446	1,37239	1,36496
C6=C5	1,49678	1,49807	1,49624	1,48965
C5-C(CH ₃) ₃	1,51924	1,52103	1,51867	1,51388
C5-C4	1,43624	1,43949	1,43623	1,43071
	UCAM-B3LYP/	UCAM-B3LYP/	UCAM-B3LYP/	UCAM-B3LYP/
	6-31+G(d)	cc-pVDZ	aug-cc-pVDZ	aug-cc-pVTZ
C4=0	1,23301	1,22851	1,23190	1,22538
C4-N3	1,41550	1,41549	1,41526	1,41157
N3-C2	1,3/19/	1,37211	1,36951	1,36453
C2=S	1,67025	1,67282	1,67531	1,665/2
C2-N1	1,35423	1,35459	1,35310	1,34/52
N1-C0	1,37000	1,3/013	1,3/4/1	1,30700
	1,50050	1,50101	1,50090	1,49470
	1,01239	1,31420	1,01170	1,30000
65-64	1,43070	1,43930	1,43030	1,42973
	6-31+G(d)	cc-nVDZ	aug-cc-nVD7	aug-cc-nV/TZ
C4=0	1 23119	1 22691	1 23036	1 22379
C4-N3	1 41645	1 41689	1 41703	1 41307
N3-C2	1.37503	1.37470	1.37200	1.36720
C2=S	1.67164	1.67514	1.67773	1.66807
C2-N1	1,35586	1,35606	1,35459	1,34932
N1-C6	1,37719	1,37678	1,37537	1,36842
C6=C5	1,49900	1,49932	1,50018	1,49431
C5-C(CH ₃) ₃	1,51327	1,51523	1,51287	1,50795
C5-C4	1,44018	1,44415	1,43970	1,43440
	UM062X/	UM062X/	UM062X/	UM062X/
	6-31+G(d)	cc-pVDZ	aug-cc-pVDZ	aug-cc-pVTZ
C4=0	1,22974	1,22553	1,22933	1,22370
C4-N3	1,41933	1,41878	1,41989	1,41537
N3-C2	1,37629	1,37699	1,3/3/3	1,37071
62=5	1,00900	1,07245	1,07492	1,00532
C2-N1	1,35603	1,35613	1,35528	1,35090
N1-C0	1,37342	1,37470	1,37287	1,30000
	1,43037	1,49020	1,49910	1,49404
C5-C(CT3)3	1 /3082	1 //300	1,00904	1,30330
05-04	IIPRF0/	IIPRF0/	IIPRF0/	IPRF0/
	6-31+G(d)	cc-pVDZ	aug-cc-nVD7	aug-cc-nVTZ
C4=0	1.23387	1.22997	1.23355	1.22728
C4-N3	1,41546	1,41530	1,41558	1.41165
N3-C2	1,37326	1,37306	1,37075	1,36616
C2=S	1,67179	1,67534	1,67737	1,66846
C2-N1	1,35222	1,35206	1,35106	1,34584
N1-C6	1,37069	1,37042	1,36915	1,36243
C6=C5	1 10229	1 49363	1 49345	1 48812
	1,49556	1,70000	1,70070	1,40012
C5-C(CH ₃) ₃	1,51060	1,51253	1,51039	1,50553

Table S3E. Interatomic distances (in angstroms) of the optimised singlet ground-state (S_0) geometries of TT at different DFT levels (solvent effects considered using PCM method). See manuscript for atom numbering.

TT S₀				
	B3LYP/	B3LYP/	B3LYP/	B3LYP/
	6-31+G(d)	cc-pVDZ	aug-cc-pVDZ	aug-cc-pVTZ
C4=0	1.23157	1.22468	1.22963	1.22273
C4-N3	1.40751	1.40972	1.40711	1.40302
N3-C2	1.36680	1.36621	1.36535	1.35980
C2=S	1.68380	1.68558	1.68892	1.67933
C2-N1	1.36269	1.36367	1.36122	1.35579
N1-C6	1.37822	1.37843	1.37813	1.37311
C6=C5	1.35752	1.35738	1.35797	1.34914
C5-CH₃	1.50107	1.49911	1.50019	1.49531
C5-C4	1.45850	1.46240	1.45911	1.45463
	CAM-B3LYP/	CAM-B3LYP/	CAM-B3LYP/	CAM-B3LYP/
	6-31+G(d)	cc-pVDZ	aug-cc-pVDZ	aug-cc-pVTZ
C4=0	1.22528	1.21832	1.22343	1.21666
C4-N3	1.39901	1.40120	1.39856	1.39450
N3-C2	1.36032	1.35978	1.35889	1.35342
C2=S	1.67711	1.67857	1.68227	1.67290
C2-N1	1.35355	1.35470	1.35209	1.34669
N1-C6	1.3/6/2	1.37700	1.37666	1.3/1/9
	1.34841	1.34836	1.34892	1.34003
	1.49001	1.49483	1.49574	1.49079
65-64	1.40040	1.40933	1.40009	1.431/3
	6-31+C(d)			00097AD/ 200-cc-n\/T7
C4-0	1 22469	1 21842	1 22300	1 21615
C4-N3	1 40090	1 40324	1.22000	1 39683
N3-C2	1 36166	1 36024	1 35919	1 35407
C2=S	1 67850	1 68113	1 68480	1 67535
C2-N1	1.35479	1.35552	1.35294	1.34788
N1-C6	1.37669	1.37700	1.37680	1.37187
C6=C5	1.35020	1.35051	1.35094	1.34226
C5-CH ₃	1.49782	1.49648	1.49718	1.49238
C5-C4	1.45682	1.46083	1.45788	1.45373
	M062X/	M062X/	M062X/	M062X/
	6-31+G(d)	cc-pVDZ	aug-cc-pVDZ	aug-cc-pVTZ
C4=0	1.22214	1.21647	1.22076	1.21564
C4-N3	1.40140	1.40278	1.40122	1.39712
N3-C2	1.36147	1.36095	1.36005	1.35648
C2=S	1.67685	1.67869	1.68241	1.67259
C2-N1	1.35511	1.35610	1.35383	1.35000
N1-C6	1.37757	1.37726	1.37740	1.37385
	1.35010	1.35031	1.35067	1.34264
	1.49683	1.49507	1.49599	1.49202
65-64	1.40004	1.40140	1.40913	1.43479 BBE0/
	FBE0/ 6-31+G(d)		aug-cc-nVD7	aug-cc-nVT7
C4-0	1 22605	1 22020	1 22495	1 21852
C4-N3	1.39929	1.40111	1.39893	1.39515
N3-C2	1.36020	1.35937	1.35869	1.35379
C2=S	1.67370	1.67616	1.67936	1.67039
C2-N1	1.35622	1.35671	1.35471	1.34988
N1-C6	1.37115	1.37154	1.37144	1.36679
C6=C5	1.35425	1.35413	1.35476	1.34693
C5-CH₃	1.49287	1.49091	1.49192	1.48781
C5-C4	1 /5/02	1 /5702	1 15131	1 45067

Table S3F. Interatomic distances (in angstroms) of the optimised lowest triplet state (T_1) geometries of TT at different DFT levels (solvent effects considered using PCM method). See manuscript for atom numbering.

TT T ₁				
	UB3LYP/	UB3LYP/	UB3LYP/	UB3LYP/
	6-31+G(d)	cc-pVDZ	aug-cc-pVDZ	aug-cc-pVTZ
C4=0	1,24342	1,23690	1,24202	1,23528
C4-N3	1,42285	1,42407	1,42147	1,41761
N3-C2	1,37795	1,37593	1,37551	1,37107
C2=S	1,68478	1,68891	1,69045	1,68091
C2-N1	1,35826	1,35866	1,35698	1,35126
N1-C6	1,37470	1,37517	1,37185	1,36394
C6=C5	1,49109	1,49391	1,48990	1,48304
C5-CH₃	1,48051	1,47899	1,47885	1,47309
C5-C4	1,42813	1,43188	1,42862	1,42302
	UCAM-B3LYP/	UCAM-B3LYP/	UCAM-B3LYP/	UCAM-B3LYP/
	6-31+G(d)	cc-pVDZ	aug-cc-pVDZ	aug-cc-pVTZ
C4=0	1,23545	1,22928	1,23438	1,22790
C4-N3	1,41279	1,41426	1,41180	1,40816
N3-62	1,37110	1,36918	1,36810	1,36341
C2=3	1,67062	1,67420	1,07002	1,00038
02-INT	1,30000	1,33000	1,00440	1,34009
C6-C5	1,37371	1,37590	1,37303	1,30029
C5-CH	1,43500	1,43011	1,43340	1,40030
C5-C4	1,42563	1 42895	1,47200	1,40005
00 04	<i>Uω</i> B 97 X D/	<i>Uω</i> B 97 X D/	UωB97XD/	<i>Uω</i> B 97 X D/
	6-31+G(d)	cc-pVDZ	aug-cc-pVDZ	aug-cc-pVTZ
C4=0	1,23429	1,22873	1,23338	1,22682
C4-N3	1,41514	1,41684	1,41468	1,41083
N3-C2	1,37324	1,37114	1,36949	1,36486
C2=S	1,67179	1,67621	1,67836	1,66883
C2-N1	1,35725	1,35751	1,35599	1,35071
N1-C6	1,37606	1,37631	1,37426	1,36694
C6=C5	1,49681	1,49918	1,49713	1,49105
C5-CH₃	1,47650	1,47554	1,47468	1,46895
C5-C4	1,42792	1,43146	1,42798	1,42256
	UM062X/			
C4-0	1 23207	1 22655	1 23167	1 226/1
C4-N3	1,23207	1,22000	1,23107	1,22041
N3-C2	1 37526	1 37431	1 37165	1 36843
C2=S	1,66976	1,67327	1,67538	1,66588
C2-N1	1,35729	1.35755	1,35670	1,35223
N1-C6	1.37449	1.37448	1.37208	1.36737
C6=C5	1,49439	1,49605	1,49412	1,48984
C5-CH ₃	1,47681	1,47555	1,47458	1,46970
C5-C4	1,42912	1,43272	1,42904	1,42405
	UPBE0/	UPBE0/	UPBE0/	UPBE0/
	6-31+G(d)	cc-pVDZ	aug-cc-pVDZ	aug-cc-pVTZ
C4=0	1,23589	1,23062	1,23540	1,22914
C4-N3	1,41196	1,41302	1,41118	1,40724
N3-C2	1,37234	1,37023	1,36938	1,36516
C2=S	1,6/236	1,67658	1,67805	1,66917
62-N1	1,00022	1,00002	1,00220	1,34704
	1,30970	1,37020	1,00019	1,30104
C5-CH	1 47203	1 47132	1 47115	1 46617
00-013	1 40766	1 /20/1	1 / 275/	1 42200

Table S4A. Singlet-singlet and singlet-triplet TD-DFT calculations from the S_0 optimised geometry of TU at the same computational level. Molecular orbitals involved, largest coefficients in the CI expansion, vertical excitation energies (in eV and nm) and oscillator strengths for each of the first six singlet and triplet excited states are reported. Note that singlet-triplet oscillator strengths of singlet-triplet excitations are set to zero due to the neglected spin-orbital coupling in the triplet TD-DFT calculation in Gaussian09.

TU TD-DFT					
B3LYP/6-31+G	6(d)/PCM				
Excited state	Transition	CI coeff.	∆E (eV)	ΔΕ (nm)	Oscillator strenath
S ₁	32→34	0.63960	3.7829	327.75	0.0000
S_2	33→34	0.66405	4.2214	293.70	0.1204
S ₃	32→35	0.63170	4.3631	284.17	0.0001
S_4	33→35	0.65621	4.7725	259.79	0.3793
S₅	$30 \rightarrow 34$	0.59560	5.0189	247.03	0.0001
5 ₆ T	31→34	0.66889	5.3138	233.33	0.0039
	33→34 33 \34	0.65598	3.1348	395.51	
T ₂	33 <u>→</u> 34	0.00090	3.57.94	340.30	
T ₄	32→35	0.56031	4.2556	291.34	
T ₅	31→34	0.53963	4.3851	282.74	
T ₆	30→34	0.49820	4.6956	264.04	
B3LYP/cc-pVI	DZ/PCM				Ossillatar
Excited state	Transition	CI coeff.	∆E (eV)	∆E (nm)	strength
S ₁	33→34	0.64743	3.8008	326.20	0.0000
S ₂	32→34	0.65810	4.3071	287.86	0.0940
S ₃	33→35	0.63249	4.4101	281.14	0.0000
S ₄	30→34	0.61187	4.9598	249.98	0.0000
ა₅ ი	32→35	0.63775	5.0077	247.59	0.3496
56 T.	31→34 32 \34	0.65207	0.3090 3 1/70	230.90	0.0116
	33→34	0.60962	3 5747	346.83	
T ₂	32→35	0.53416	3.6634	338.44	
T ₄	33→35	0.51830	4.2464	291.97	
T ₅	31→34	0.50437	4.4266	280.09	
T ₆	30→34	0.47483	4.6556	266.31	
B3LYP/aug-cc	-pVDZ/PCM				Ossillator
Excited state	Transition	CI coeff.	∆E (eV)	∆E (nm)	strength
S ₁	32→34	0.63923	3.7392	331.58	0.0000
S ₂	33→34	0.67070	4.1559	298.33	0.1095
S₃	32→35	0.63155	4.3072	287.86	0.0003
54	33→35	0.66291	4.7310	262.07	0.3642
35 S.	30→34 31 34	0.60996	4.9509	200.43	0.0002
56 T₄	31→34 33→34	0.65366	3 1085	200.02	0.0032
T ₂	32→34	0.60291	3 5383	350.00	
T ₃	33→35	0.56572	3.6040	344.02	
T ₄	32→35	0.55903	4.1951	295.55	
T_5	31→34	0.54009	4.3515	284.92	
T ₆	30→34	0.51604	4.6313	267.71	
B3LYP/aug-cc	-pVTZ/PCM				Oscillator
Excited state	Transition	CI coeff.	∆E (eV)	ΔΕ (nm)	strength
S ₁	33→34	0.63913	3.7592	329.82	0.0000
S ₂	$32 \rightarrow 34$	0.67054	4.1993	295.25	0.1147
53 S	33→35 22 25	0.63166	4.3483	285.13	0.0004
34 S	32→35	0.00324	4.7624	200.34 247 72	0.3373
55 S	30→34 31→34	0.00091	5.0049	241.13	0.0002
C6 T₁	$32 \rightarrow 34$	0.65437	3,1364	395 31	
T ₂	33→34	0.60320	3.5466	349.59	
Τ ₃	32→35	0.56204	3.6415	340.47	
T_4	33→35	0.56139	4.2377	292.57	
T_5	31→34	0.54290	4.4084	281.25	
T ₆	30→34	0.51382	4.6815	264.84	

Table S4B. Singlet-singlet and singlet-triplet TD-DFT calculations from the S_0 optimised geometry of TU at the same computational level. Molecular orbitals involved, largest coefficients in the CI expansion, vertical excitation energies (in eV and nm) and oscillator strengths for each of the first six singlet and triplet excited states are reported. Note that singlet-triplet oscillator strengths of singlet-triplet excitations are set to zero due to the neglected spin-orbital coupling in the triplet TD-DFT calculation in Gaussian09.

TU TD-DFT					
CAM-B3LYP/6	-31+G(d)/PC	М			
Excited state	Transition	CI coeff.	∆E (eV)	ΔΕ (nm)	Oscillator strenath
S ₁	32→34	0.56419	4.1133	301.42	0.0000
S_2	33→34	0.68438	4.7009	263.74	0.4171
S ₃	33→35	0.67063	5.1498	240.75	0.1367
S_4	30→35	0.41970	5.2099	237.98	0.0001
S₅	32→35	0.45067	5.7427	215.90	0.0003
5 ₆ T	33→30 22 34	0.66735	5.9547	208.21	0.0535
	33→34 33 ,35	0.63144	3.2105	380.18	
	33→33 32 <u>→</u> 34	0.52010	3.0079	310.19	
T,	30→35	0.49564	4.8304	256.68	
T ₅	31→35	0.58949	4.9567	250.14	
T ₆	31→34	0.43419	5.1040	242.92	
CAM-B3LYP/c	c-pVDZ/PCN	1			Ossillator
Excited state	Transition	CI coeff.	∆E (eV)	∆E (nm)	strength
S ₁	32→34	0.54667	4.1600	298.04	0.0000
S ₂	33→34	0.68667	4.8625	254.98	0.3203
S ₃	30→35	0.40932	5.1713	239.75	0.0001
S_4	$33 \rightarrow 35$	0.67697	5.3662	231.05	0.1880
5 5	32→35 21 .24	0.45014	5.8016	213.71	0.0000
56 T	31→34 33 \34	0.60072	2,2207	200.77	0.0095
T ₁	33 <u></u> 35	0.02241	3.2207	333.81	
	32→34	0.53459	3.8946	318.35	
T ₄	$30 \rightarrow 35$	0.47265	4.7361	261.78	
T ₅	31→35	0.62549	5.0062	247.66	
T ₆	31→34	0.46246	5.1607	240.25	
CAM-B3LYP/a	ug-cc-pVDZ	/PCM			Ossillator
Excited state	Transition	CI coeff.	∆E (eV)	∆E (nm)	strength
S ₁	32→34	0.55108	4.0822	303.72	0.0000
S ₂	33→34	0.68436	4.6377	267.34	0.3733
S ₃	33→35 20	0.67093	5.0904	243.56	0.1478
54 S-	30→35 32 ,35	0.39344	5.1532	240.09	0.0001
55 S	32→35 33 <u>→</u> 36	0.43324	5.0000	210.72	0.0007
06 T₁	33→34	0.62781	3 1869	389.04	0.0400
T ₂	33→35	0.53360	3.6653	338.26	
T_3	32→34	0.53974	3.8475	322.25	
T_4	30→35	0.47530	4.7802	259.37	
T ₅	31→35	0.60601	4.9523	250.36	
	31→34	0.45530	5.0607	244.99	
	ug-cc-pv12/				Oscillator
Excited state	Transition	CI coeff.	ΔΕ (eV)	ΔΕ (nm)	strength
S ₁	32→34	0.55812	4.0878	303.30	0.0000
5 ₂	33→34 22 . 25	0.68453	4.6695	265.52	0.3805
53 C	30 <u>3</u> 5	0.07017	5.1260	241.70	0.1353
54 S-	30→35 32 <u>→</u> 35	0.39723	5.2055	230.20	0.0002
Se	33→36	0.61610	5.8444	212.14	0.0484
U T₁	33→34	0.63196	3.2182	385.25	
T_2	33→35	0.52342	3.7037	334.76	
T_3^-	32→34	0.54653	3.8415	322.75	
T_4	30→35	0.48019	4.8320	256.59	
T₅	31→35	0.59799	5.0223	246.87	
T ₆	31→34	0.44919	5.1166	242.32	

Table S4C. Singlet-singlet and singlet-triplet TD-DFT calculations from the S_0 optimised geometry of TU at the same computational level. Molecular orbitals involved, largest coefficients in the CI expansion, vertical excitation energies (in eV and nm) and oscillator strengths for each of the first six singlet and triplet excited states are reported. Note that singlet-triplet oscillator strengths of singlet-triplet excitations are set to zero due to the neglected spin-orbital coupling in the triplet TD-DFT calculation in Gaussian09.

TU TD-DFT					
ωB97XD/6-31-	⊦G(d)/PCM				
Excited state	Transition	CI coeff.	∆E (eV)	∆E (nm)	Oscillator strength
S ₁	32→34	0.56376	4.1327	300.01	0.0000
S ₂	33→34	0.68183	4.7334	261.94	0.4289
S₃	33→35	0.66594	5.1836	239.18	0.1331
S ₄	30→35	0.42891	5.2126	237.86	0.0001
S ₅	32→35	0.46424	5.7965	213.90	0.0003
S_6	31→34	0.66078	5.8940	210.36	0.0089
	33→34	0.63615	3.3141	374.11	
	33→35	0.53059	3.7756	328.38	
	32→34	0.55558	3.9261	315.79	
	30→35	0.49274	4.8535	255.45	
	31→33 21 .24	0.30733	5.0140	247.20	
ωB97XD/cc-p	VDZ/PCM	0.40005	5.1000	239.90	
Excited state	Transition	Cloooff		AE (nm)	Oscillator
					strength
51 C	32→34	0.55241	4.1033	290.30	0.0000
52 S.	33→34 30 \35	0.00400	4.0002	200.70	0.3329
03 S.	33 <u></u> 35	0.41050	5 3889	239.51	0.0001
54 Sc	$32 \rightarrow 35$	0.07232	5 8598	211 59	0.0000
Se	31→34	0.65619	5 9432	208.61	0.0084
U₀ T₁	33→34	0.62909	3.3333	371.96	
T ₂	33→35	0.52063	3.8127	325.18	
T ₃	32→34	0.54216	3.9439	314.37	
T₄	30→35	0.47350	4.7758	259.61	
T₅	31→35	0.60550	5.0659	244.74	
T ₆	31→34	0.42832	5.2226	237.40	
ωB97XD/aug-	cc-pVDZ/PC	М			Ossillator
Excited state	Transition	CI coeff.	∆E (eV)	ΔΕ (nm)	strength
S ₁	32→34	0.55366	4.1214	300.83	0.0000
S_2	33→34	0.68175	4.6808	264.88	0.3882
S ₃	33→35	0.66550	5.1339	241.50	0.1405
S_4	30→35	0.41238	5.1654	240.03	0.0001
S ₅	32→35	0.45453	5.7406	215.98	0.0009
\underline{S}_{6}	31→34	0.66027	5.8343	212.51	0.0119
	33→34	0.63267	3.3024	375.43	
	33→35	0.53657	3.7642	329.37	
	32→34 20 . 25	0.54440	3.9137	310.79	
	30→35 31 35	0.47734	4.6090	237.79	
	31→35 31→34	0.37437	5 1384	247.30	
ωB97XD/aug-	cc-pVTZ/PCI	M	0.1001	211120	
Excited state	Transition	CI coeff.	ΔΕ (eV)	ΔΕ (nm)	Oscillator
6	22.24	0 56094	4 1 2 2 0	200 65	strengtn
51 C	32→34	0.50064	4.1239	300.00	0.0000
52 S.	33→34 33 \35	0.66409	4.7072	203.39	0.3974
03 S.	30→35	0.00409	5 2054	238.18	0.0001
5₄ S₅	$32 \rightarrow 35$	0 45953	5 7763	214 64	0.0015
S.	31→34	0.65869	5.8757	211.04	0.0139
Ŭ° T₁		0.62615	3.3259	372.78	
• •	33→34	0.03013			
T2	33→34 33→35	0.52775	3.7955	326.66	
T ₂ T ₃	33→34 33→35 32→34	0.52775 0.55140	3.7955 3.9093	326.66 317.15	
T₂ T₃ T₄	$33 \rightarrow 34$ $33 \rightarrow 35$ $32 \rightarrow 34$ $30 \rightarrow 35$	0.52775 0.55140 0.48213	3.7955 3.9093 4.8507	326.66 317.15 255.60	
${f T_2}\ {f T_3}\ {f T_4}\ {f T_5}$	$33 \rightarrow 34$ $33 \rightarrow 35$ $32 \rightarrow 34$ $30 \rightarrow 35$ $31 \rightarrow 35$	0.52775 0.55140 0.48213 0.56220	3.7955 3.9093 4.8507 5.0670	326.66 317.15 255.60 244.69	

Table S4D. Singlet-singlet and singlet-triplet TD-DFT calculations from the S_0 optimised geometry of TU at the same computational level. Molecular orbitals involved, largest coefficients in the CI expansion, vertical excitation energies (in eV and nm) and oscillator strengths for each of the first six singlet and triplet excited states are reported. Note that singlet-triplet oscillator strengths of singlet-triplet excitations are set to zero due to the neglected spin-orbital coupling in the triplet TD-DFT calculation in Gaussian09.

TU TD-DFT					
M062X/6-31+G	G(d)/PCM				
Excited state	Transition	CI coeff.	ΔΕ (eV)	ΔE (nm)	Oscillator strength
S ₁	32→34	0.57835	4.0327	307.45	0.0000
S ₂	33→34	0.68738	4.6729	265.32	0.4206
S ₃	30→35	0.48366	5.0910	243.54	0.0001
S ₄	33→35	0.67064	5.1482	240.83	0.1200
S₅	32→35	0.49972	5.7294	216.40	0.0004
5 ₆ T	33→30 22 . 24	0.66866	5.8311	212.63	0.0465
Ι ₁ Τ.	33→34 32 <u></u> 34	0.64167	3.3904	305.09	
T ₂	32→35	0.49650	3 8647	320.81	
T ₄	30→35	0.52330	4.7813	259.31	
T ₅	31→35	0.59724	5.0852	243.82	
T ₆	31→34	0.48952	5.1504	240.73	
M062X/cc-pVE	DZ/PCM				Ossillator
Excited state	Transition	CI coeff.	∆E (eV)	∆E (nm)	strength
S ₁	32→34	0.56468	4.0564	305.65	0.0000
S ₂	33→34	0.69118	4.8207	257.19	0.3416
S ₃	30→35	0.47585	5.0589	245.08	0.0001
S_4	33→35	0.67420	5.3337	232.45	0.1575
5 5	32→35 21 .24	0.49730	5.7899	214.14	0.0000
56 T.	31→34 33 \34	0.00304	3 4096	207.00	0.0160
	32→34	0.55724	3 8673	320 59	
T ₂	31→34	-0.44259	3.9080	317.26	
T₄	30→35	0.50831	4.7185	262.76	
T ₅	31→35	0.61488	5.1454	240.96	
T ₆	31→34	0.48959	5.2116	237.90	
M062X/aug-cc	-pvdz/PCM				Oscillator
Excited state	Transition	CI coeff.	∆E (eV)	ΔΕ (nm)	strength
S ₁	32→34	0.56785	3.9924	310.55	0.0000
S ₂	33→34	0.68770	4.5999	269.54	0.3771
S₃	$30 \rightarrow 35$	0.46311	5.0423	245.89	0.0001
54	33→35 22 .25	0.07113	5.0764	244.24	0.1279
35 S.	32→30 33 \36	0.40332	5.6434	219.02	0.0007
06 T₁	33→34	0.63718	3 3591	369 10	0.0401
T ₂	32→34	0.56030	3.8232	324.29	
T_3	33→35	0.50137	3.8387	322.98	
T_4	30→35	0.50683	4.7392	261.61	
T ₅	31→35	0.60523	5.0723	244.44	
	$31 \rightarrow 34$	0.53951	5.1019	243.02	
		<u> </u>		• - / \	Oscillator
Excited state	Transition	CI coeff.	ΔΕ (eV)	ΔE (nm)	strength
S₁	32→34	0.56932	4.0028	309.75	0.0000
52 S	33→34 33 \35	0.68706	4.6436	267.00	0.3848
3 3	33→35 30 \35	0.07132	5 1282	242.23	0.1200
54 S₅	32→35	0.43723	5 7015	241.77	0.0002
Se Se	33→36	0.63643	5.7418	215.93	0.0428
T_1	33→34	0.63684	3.3919	365.53	
T_2	32→34	0.56206	3.8340	323.38	
T ₃	33→35	0.50125	3.8865	319.01	
T_4	30→35	0.50581	4.8381	256.27	
T₅ T	31→35	0.57484	5.1444	241.01	
I 6	JI→34	0.34724	0.180Z	239.34	

Table S4E. Singlet-singlet and singlet-triplet TD-DFT calculations from the S_0 optimised geometry of TU at the same computational level. Molecular orbitals involved, largest coefficients in the CI expansion, vertical excitation energies (in eV and nm) and oscillator strengths for each of the first six singlet and triplet excited states are reported. Note that singlet-triplet oscillator strengths of singlet-triplet excitations are set to zero due to the neglected spin-orbital coupling in the triplet TD-DFT calculation in Gaussian09.

TU TD-DFT					
PBE0/6-31+G(d)/PCM				
Excited state	Transition	CI coeff.	∆E (eV)	∆E (nm)	Oscillator
S₁	32→34	0.62593	3.9478	314.06	0.0000
S_2	33→34	0.67528	4.4242	280.24	0.1700
S ₃	32→35	0.60456	4.6350	267.49	0.0002
S ₄	33→35	0.67072	4.9431	250.82	0.3533
S ₅	30→34	0.54414	5.1887	238.95	0.0001
S_6	31→34	0.67974	5.4940	225.67	0.0033
T ₁	33→34	0.65159	3.1412	394.70	
T_2	33→35	0.54982	3.6659	338.21	
T ₃	32→34	0.59772	3.7125	333.96	
T_4	32→35	0.47674	4.4609	277.93	
T_5	31→34	0.52599	4.5771	270.88	
	31→35	0.65536	4.7725	259.79	
PBE0/cc-pvD/					Oscillator
Excited state	Transition	CI coeff.	ΔΕ (eV)	∆E (nm)	strength
S ₁	32→34	0.63084	3.9791	311.59	0.0000
S ₂	33→34	0.66906	4.5196	274.32	0.1344
S ₃	32→35	0.59257	4.6772	265.08	0.0000
S ₄	30→34	0.55593	5.1574	240.40	0.0000
S_5	33→35	0.65939	5.1730	239.68	0.3415
S ₆	31→34	0.66816	5.5482	223.47	0.0073
	33→34	0.64698	3.1595	392.42	
	33→35	0.52937	3.7013	334.97	
	32→34 22 25	0.59796	3.7205	333.25	
	32→35	0.41979	4.4252	280.17	
	31→34 31→35	0.49005	4.8191	257.28	
PBE0/aug-cc-	pVDZ/PCM				
Excited state	Transition	CI coeff.	ΔΕ (eV)	ΔΕ (nm)	Oscillator
S1	32→34	0 62224	3 9162	316 59	0.0000
S ₂	33→34	0.68042	4.3592	284.42	0.1526
S2 S3	32→35	0.60167	4.5793	270.75	0.0004
S₄	33→35	0.67572	4.9002	253.02	0.3422
S ₅	30→34	0.56238	5.1240	241.97	0.0003
S ₆	31→34	0.68108	5.4393	227.94	0.0054
T ₁	33→34	0.64880	3.1190	397.51	
T ₂	33→35	0.55558	3.6417	340.46	
T_3	32→34	0.59014	3.6804	336.88	
T_4	32→35	0.47522	4.4030	281.59	
T_5	31→34	0.52409	4.5476	272.63	
	31→35	0.65792	4.7616	260.38	
PBE0/aug-cc-					Oscillator
Excited state	Transition	CI coeff.	ΔΕ (eV)	∆E (nm)	strength
S ₁	32→34	0.62338	3.9267	315.75	0.0000
S ₂	33→34	0.68079	4.3957	282.06	0.1592
S ₃	32→35	0.60345	4.6154	268.63	0.0004
S_4	33→35	0.67633	4.9288	251.55	0.3335
55	$30 \rightarrow 34$	0.55990	5.1684	239.89	0.0003
5 ₆ T	31→34 22 24	0.0020/	5.4854	220.U3	0.0055
	33→34 33 .25	0.00000	3.1309	330.31 330.20	
	30→30 30 \24	0.55000	3 6745	337 11	
T.	32→34 32→35	0.33100	4 4406	279 21	
Ť-	31→34	0.52490	4.5962	269 76	
T ₆	31→35	0.65735	4.8146	257.52	

Table S5A. Singlet-singlet and singlet-triplet TD-DFT calculations from the S_0 optimised geometry of BTU at the same computational level. Molecular orbitals involved, largest coefficients in the CI expansion, vertical excitation energies (in eV and nm) and oscillator strengths for each of the first six singlet and triplet excited states are reported. Note that singlet-triplet oscillator strengths of singlet-triplet excitations are set to zero due to the neglected spin-orbital coupling in the triplet TD-DFT calculation in Gaussian09.

TU TD-DFT					
B3LYP/6-31+G	6(d)/PCM				
Excited state	Transition	CI coeff.	ΔΕ (eV)	∆E (nm)	Oscillator strength
S ₁	48→50	0.60837	3.8917	318.58	0.0000
S ₂	49→50	0.67450	4.2000	295.20	0.1558
S₃	48→51	0.59723	4.3663	283.95	0.0001
S_4	49→51	0.66716	4.6857	264.60	0.4712
S ₅	46→50	0.58886	4.9450	250.73	0.0001
S_6	47→50	0.66570	5.3282	232.69	0.0053
	49→50	0.65502	3.1400	394.85	
	49→51 49 .50	0.61174	3.5763	340.09	
13 T.	40→50 48 <u>→</u> 51	0.50762	3.0903	202 13	
	47→50	0.58450	4 3921	282.10	
T ₆	46→50	0.48027	4.6489	266.69	
B3LYP/cc-pVD	DZ/PCM				
Excited state	Transition	CI coeff.	∆E (eV)	ΔΕ (nm)	Oscillator strenath
S ₁	48→50	0.61430	3.8961	318.23	0.0000
S ₂	49→50	0.66431	4.2714	290.27	0.1182
S ₃	48→51	0.60032	4.3795	283.10	0.0000
S_4	49→51	0.65178	4.8893	253.58	0.4713
S₅	46→50	0.60002	4.9279	251.59	0.0000
\underline{S}_{6}	46→51	0.61263	5.4664	226.81	0.0002
T ₁	49→50	0.65030	3.1496	393.66	
	49→51 49 50	0.59498	3.6056	343.87	
1 ₃ T	40→00 49 .51	0.30304	3.0709	337.74	
	40→51 47 \50	0.47920	4.2244	293.50	
T ₆	47 <i>→</i> 50 46→50	0.30330	4.6302	267.77	
B3LYP/aug-cc	-pVDZ/PCM				
Excited state	Transition	CI coeff.	∆E (eV)	ΔΕ (nm)	Oscillator strenath
S ₁	48→50	0.60842	3.8521	321.86	0.0000
S ₂	49→50	0.67993	4.1385	299.59	0.1433
S ₃	48→51	0.59792	4.3137	287.42	0.0003
S ₄	49→51	0.67265	4.6483	266.73	0.4557
S₅	46→50	0.60466	4.8852	253.80	0.0002
S ₆	49→52	0.67395	5.3808	230.42	0.0325
	49→50 40 51	0.65284	3.1141	398.14	
12 T.	49→51 48 \50	0.01375	3.0047	340.70	
	48→51	0.50515	4 1890	295 97	
T ₅	47→50	0.58359	4.3638	284.12	
T ₆	46→50	0.50022	4.5904	270.09	
B3LYP/aug-cc	-pVTZ/PCM				o
Excited state	Transition	CI coeff.	ΔΕ (eV)	∆E (nm)	Oscillator strength
S ₁	48→50	0.60889	3.8728	320.14	0.0000
S_2	49→50	0.67907	4.1845	296.29	0.1527
S ₃	48→51	0.59867	4.3590	284.43	0.0003
S ₄	49→51	0.67214	4.6783	265.02	0.4450
S₅	46→50	0.59845	4.9439	250.78	0.0002
5 ₆ T	49→52 40 50	0.67290	5.3/54	230.65	0.0329
11 T.	49→50 ⊿051	0.00490	3.1470 3.5861	393.88 345 71	
	<u>+</u> 3→51 48 <u>→</u> 50	0.56540	3 6678	338 03	
T.	48→ <u>5</u> 1	0.50631	4,2373	292 60	
Τ ₅	47→50	0.58657	4.4228	280.33	
T ₆	46→50	0.49558	4.6433	267.02	

Table S5B. Singlet-singlet and singlet-triplet TD-DFT calculations from the S_0 optimised geometry of BTU at the same computational level. Molecular orbitals involved, largest coefficients in the CI expansion, vertical excitation energies (in eV and nm) and oscillator strengths for each of the first six singlet and triplet excited states are reported. Note that singlet-triplet oscillator strengths of singlet-triplet excitations are set to zero due to the neglected spin-orbital coupling in the triplet TD-DFT calculation in Gaussian09.

BTU TD-DFT					
CAM-B3LYP/6	-31+G(d)/PC	М			
Excited state	Transition	CI coeff.	∆E (eV)	ΔΕ (nm)	Oscillator strength
S ₁	48→50	0.52517	4.2193	293.85	0.0000
S_2	49→50	0.68039	4.6764	265.13	0.5169
S ₃	49→51	0.66951	5.0772	244.20	0.1607
S_4	46→51	0.42063	5.1256	241.89	0.0000
S₅	48→51	0.44748	5.7447	215.82	0.0005
S_6	49→52	0.64922	5.8329	212.56	0.0511
T ₁	49→50	0.62489	3.2151	385.63	
	49→51	0.57696	3.6662	338.18	
	48→50 46 51	0.51501	4.0011	309.88	
	40→51 47 \51	0.47009	4.7370	201.09	
T ₆	47→50	0.45946	5.1027	242.98	
CAM-B3LYP/c	c-pVDZ/PCM	1			
Excited state	Transition	CI coeff.	∆E (eV)	∆E (nm)	Oscillator strength
S ₁	48→50	0.49946	4.2413	292.33	0.0000
S ₂	49→50	0.68781	4.8245	256.99	0.4070
S₃	46→50	0.41935	5.1136	242.46	0.0001
S ₄	49→51	0.68594	5.2572	235.84	0.2482
55	48→51 47 50	0.42808	5.7807	214.48	0.0000
56 T	47→50 40→50	0.65964	5.9938	206.85	0.0085
	49→50 40 \51	0.02152	3.2200	304.90	
T ₂	49→51 48→51	0.37099	3 0813	311 41	
T.	46→51	0.45064	4 6889	264 42	
T₅	40 01 47→51	0.62354	4 9387	251.05	
T ₆	47→50	0.49291	5.1406	241.19	
CAM-B3LYP/a	ug-cc-pVDZ	/PCM			
Excited state	Transition	CI coeff.	∆E (eV)	∆E (nm)	Oscillator strength
S ₁	48→50	0.50632	4.1907	295.85	0.0000
S ₂	49→50	0.67962	4.6194	268.40	0.4694
S₃	49→51	0.66886	5.0202	246.97	0.1740
S_4	46→50	0.40581	5.0752	244.30	0.0000
S ₅	48→51	0.42723	5.6726	218.57	0.0008
56 T	49→52 40 50	0.57623	5.7355	216.17	0.0464
	49→50 40 →51	0.62200	3.1920	300.33	
12 T.	49→51 48→50	0.38134	3 9669	340.20	
T4	46→51	0.43400	4 6925	264 21	
T ₅	47→51	0.60162	4.8850	253.81	
T ₆	47→50	0.47784	5.0648	244.80	
CAM-B3LYP/a	ug-cc-pVTZ/	PCM			Ossillatar
Excited state	Transition	CI coeff.	ΔΕ (eV)	∆E (nm)	strength
S ₁	48→50	0.51972	4.1961	295.47	0.0000
S ₂	49→50	0.68000	4.6527	266.48	0.4840
S_3	49→51	0.66811	5.0580	245.12	0.1546
54	4b→51	-0.40462	5.1313	241.62	0.0001
5 5	4ŏ→51 40 52	0.43296	5.7183	210.82	0.0000
З 6 Т	49→52 10 \50	0.00921	J.1∠ŏ∠ 3 J227	210.44	0.0473
11 T-	49→30 49 <u>→</u> 51	0.02793	3.2331	337 52	
T ₂	48→50	0.50791	3,9608	313.03	
T ₄	46→51	-0.45882	4.7482	261.12	
T_5	47→51	0.58816	4.9486	250.55	
	47→50	0.46723	5.1261	241.87	

Table S5C. Singlet-singlet and singlet-triplet TD-DFT calculations from the S_0 optimised geometry of BTU at the same computational level. Molecular orbitals involved, largest coefficients in the CI expansion, vertical excitation energies (in eV and nm) and oscillator strengths for each of the first six singlet and triplet excited states are reported. Note that singlet-triplet oscillator strengths of singlet-triplet excitations are set to zero due to the neglected spin-orbital coupling in the triplet TD-DFT calculation in Gaussian09.

BTU TD-DFT					
ωB97XD/6-31-	⊦G(d)/PCM				
Excited state	Transition	CI coeff.	∆E (eV)	ΔΕ (nm)	Oscillator
S₁	48→50	0.52829	4.2362	292.68	0.0000
S ₂	49→50	0.67875	4.7028	263.64	0.5350
S ₃	49→51	0.66651	5.1042	242.91	0.1565
S_4	46→51	0.42727	5.1259	241.88	0.0000
S ₅	48→51	0.45717	5.8082	213.46	0.0004
S_6	47→50	0.65554	5.9252	209.25	0.0101
T₁	49→50	0.63176	3.3102	374.55	
	49→51	0.58040	3.7424	331.30	
	48→50 46 →51	0.51988	4.0399	306.90	
14 T-	40→51 47 <u>→</u> 51	0.47104	4.7010	200.30	
T ₆	47→51 47→50	0.44218	5.1676	239.93	
ωB97XD/cc-p	DZ/PCM				
Excited state	Transition	CI coeff.	ΔΕ (eV)	ΔΕ (nm)	Oscillator strength
S1	48→50	0.51227	4,2683	290.47	0.0000
S ₂	49→50	0.68636	4.8454	255.88	0.4262
S ₃	46→50	0.42126	5.1231	242.01	0.0001
S_4	49→51	0.68335	5.2808	234.78	0.2346
S ₅	48→51	0.44495	5.8507	211.91	0.0000
S_6	47→50	0.65805	5.9991	206.67	0.0067
T₁	49→50	0.62943	3.3235	373.05	
T ₂	49→51	0.57371	3.7739	328.53	
	48→50 46 51	0.50234	4.0346	307.30	
	40→51 47 51	0.45051	4.7266	262.31	
	47→51 47→50	0.46802	4.9972 5.2084	246.11	
ωB97XD/aug-	cc-pVDZ/PCI	M	0.2001	200.00	
Excited state	Transition	CI coeff.	ΔΕ (eV)	∆E (nm)	Oscillator strength
S ₁	48→50	0.51215	4.2260	293.38	0.0000
S ₂	49→50	0.67790	4.6569	266.24	0.4896
S ₃	49→51	0.66542	5.0567	245.19	0.1664
S_4	46→50	0.41475	5.0821	243.96	0.0000
S ₅	48→51	0.44177	5.7543	215.46	0.0010
S ₆	49→52	0.51958	5.9669	207.79	0.0564
	49→50 40 51	0.62824	3.2963	3/6.13	
	49→51 49→50	0.58521	3.7326	332.17	
т.	40→50 46→51	-0.45118	4.0201	262.62	
	47→51	0.58215	4 9409	250.94	
s T ₆	47→50	0.45515	5.1424	241.10	
ωB97XD/aug-	cc-pVTZ/PC	N			
Excited state	Transition	CI coeff.	∆E (eV)	ΔΕ (nm)	Oscillator strenath
S ₁	48→50	0.52510	4.2268	293.33	0.0000
S ₂	49→50	0.67806	4.6842	264.69	0.5058
S ₃	49→51	0.66381	5.0917	243.50	0.1478
S_4	46→51	-0.41668	5.1298	241.69	0.0001
S₅	48→51	0.45222	5.7920	214.06	0.0017
S ₆	49→52	0.4/821	5.9329	208.98	0.0592
	49→50 40 51	0.63299	3.3288	372.46	
	49→51 48 50	0.57646	3.1510 1 0210	302 32	
Т. Т.	40→50 46→51	-0.46222	4.0219	259 98	
Τ ₋	47→51	0.56787	4,9951	248 21	
T ₆	47→50	0.44392	5.1947	238.67	

Table S5D. Singlet-singlet and singlet-triplet TD-DFT calculations from the S_0 optimised geometry of BTU at the same computational level. Molecular orbitals involved, largest coefficients in the CI expansion, vertical excitation energies (in eV and nm) and oscillator strengths for each of the first six singlet and triplet excited states are reported. Note that singlet-triplet oscillator strengths of singlet-triplet excitations are set to zero due to the neglected spin-orbital coupling in the triplet TD-DFT calculation in Gaussian09.

BTU TD-DFT	BTU TD-DFT						
M062X/6-31+G(d)/PCM							
Excited state	Transition	CI coeff.	∆E (eV)	ΔΕ (nm)	Oscillator		
S₁	48→50	0.53842	4.1347	299.86	0.0000		
S ₂	49→50	0.68342	4.6439	266.98	0.5197		
S ₃	46→51	-0.45377	4.9911	248.41	0.0000		
S_4	49→51	0.67115	5.0659	244.74	0.1459		
S ₅	49→52	0.65350	5.6951	217.70	0.0445		
S_6	48→51	0.47453	5.7137	216.99	0.0003		
T ₁	49→50	0.63776	3.4283	361.65			
T_2	49→51	0.54687	3.8008	326.20			
T ₃	48→50	0.53082	3.9728	312.08			
T_4	46→51	-0.47946	4.6814	264.85			
T₅	47→51	0.59475	5.0165	247.15			
	47→50)7/PCM	0.49807	5.1309	241.64			
		~ ~			Oscillator		
Excited state	Transition	CI coeff.	ΔΕ (eV)	$\Delta E (nm)$	strength		
S ₁	48→50	0.52293	4.1380	299.62	0.0000		
S ₂	49→50	0.69152	4.7813	259.31	0.4386		
S3	46→51 40 51	0.44710	4.9826	248.83	0.0001		
54	49→51 49 51	0.68390	5.2219	237.43	0.2093		
35 S	40→31 47 →50	0.40790	5.7551	210.43	0.0000		
36 T.	47→50 49 \50	0.00001	3 4368	200.71	0.0171		
T.	49→50 49 <u>→</u> 51	0.03000	3 8382	323.03			
	48→50	0.51541	3.9539	313.57			
T ₄	46→51	0.47156	4.6523	266.50			
T ₅	47→51	0.61669	5.0739	244.36			
T ₆	47→50	0.52387	5.1822	239.25			
M062X/aug-co	-pVDZ/PCM				o		
Excited state	Transition	CI coeff.	ΔΕ (eV)	ΔΕ (nm)	Oscillator strength		
S ₁	48→50	0.51865	4.0949	302.78	0.0000		
S ₂	49→50	0.68200	4.5766	270.91	0.4705		
S ₃	46→51	0.42850	4.9360	251.19	0.0001		
S_4	49→51	0.66922	4.9941	248.26	0.1575		
S₅	49→52	0.61031	5.5643	222.82	0.0378		
S_6	48→51	0.45792	5.6173	220.72	0.0011		
T ₁	49→50	0.62945	3.4012	364.53			
T_2	49→51	0.54648	3.7712	328.77			
	48→50 40 51	0.51028	3.9347	315.10			
	40→51 47 →51	0.45660	4.6316	267.69			
	$47 \rightarrow 51$ $47 \rightarrow 50$	0.53605	5 0777	247.92			
M062X/aug-co	-pVTZ/PCM	0.00000	010111				
Excited state	Transition	CI coeff.	ΔΕ (eV)	ΔΕ (nm)	Oscillator		
ç	48 .50	0 52702	4 1069	201.00	strength		
51 S.	40→50 49 <u>→</u> 50	0.52705	4.1000	268 21	0.0000		
52 S2	46→51	-0 43235	5 0314	246 42	0.4073		
⊂, S₄	49→51	0.66953	5.0363	246.18	0.1424		
S ₅	49→52	0.59809	5.6094	221.03	0.0401		
$\tilde{S_6}$	48→51	0.46245	5.6881	217.97	0.0016		
T_1	49→50	0.63248	3.4300	361.47			
T_2	49→51	0.54880	3.8143	325.05			
T ₃	48→50	0.51922	3.9459	314.21			
T_4	46→51	-0.46227	4.7376	261.70			
	47→51	0.60529	5.0793	244.10			
6	41→50	0.52452	0.1000	240.24			

Table S5E. Singlet-singlet and singlet-triplet TD-DFT calculations from the S_0 optimised geometry of BTU at the same computational level. Molecular orbitals involved, largest coefficients in the CI expansion, vertical excitation energies (in eV and nm) and oscillator strengths for each of the first six singlet and triplet excited states are reported. Note that singlet-triplet oscillator strengths of singlet-triplet excitations are set to zero due to the neglected spin-orbital coupling in the triplet TD-DFT calculation in Gaussian09.

PBE0/6-31+G(d)/PCM Cl coeff. ΔE (eV) ΔE (nm) Oscillator sements S1 48-50 0.59284 4.0553 305.73 0.0000 S2 49-51 0.56080 4.6266 267.98 0.0001 S3 48-51 0.56080 4.6266 267.98 0.0001 S5 46-50 0.53233 5.1132 224.48 0.0001 S5 47-50 0.66745 3.1366 395.41 - T2 48-50 0.56013 3.8288 328.62 - T4 48-51 0.40839 4.190 280.57 - T5 47-50 0.56755 4.5686 271.38 - T6 47-51 0.64115 4.7165 262.87 - PBE0/cc-pVDZ/PCM Zeroid $\Delta4564$ 0.07364 0.1719 S3 48-51 0.56042 5.121 242.53 0.0000 S4 49-51 0.66824 5.5953 322.19 -	BTU TD-DFT							
Excited stateTransitionCl coeff. ΔE (eV) ΔE (nm)OscillatorS148-500.592844.0553305.730.0000S249-500.683664.3921282.290.2215S348-510.56004.626267.980.0001S449-510.678894.8504255.620.4344S546-500.522335.1132224.890.0050T149-500.660443.1356395.41T348-500.560133.8288323.82T448-510.403934.190280.57T547-500.567554.5666271.38T547-500.567554.5666271.38T647-510.567554.5666201.390.0000S249-500.674014.4770276.940.1719S348-500.594424.0736304.360.0000S449-510.668015.0462245.700.4533S546-500.569133.6551339.21T249-500.647613.1525393.29T547-500.682534.94949221.11T60.59133.6551339.21T647-500.584634.6216268.27T647-500.584534.6216268.27T647-500.584534.6216268.27 <th>PBE0/6-31+G(</th> <th>d)/PCM</th> <th></th> <th></th> <th></th> <th></th>	PBE0/6-31+G(d)/PCM						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Excited state	Transition	CI coeff.	ΔΕ (eV)	∆E (nm)	Oscillator strength		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S ₁	48→50	0.59284	4.0553	305.73	0.0000		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S_2	49→50	0.68368	4.3921	282.29	0.2215		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S ₃	48→51	0.56080	4.6266	267.98	0.0001		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S_4	49→51	0.67889	4.8504	255.62	0.4344		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S ₅	46→50	0.53233	5.1132	242.48	0.0001		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S ₆	47→50	0.67757	5.5131	224.89	0.0050		
$\begin{array}{c cccc cccccccccccccccccccccccccccccc$	T_1	49→50	0.65044	3.1356	395.41			
$\begin{array}{c cccc cccccccccccccccccccccccccccccc$	1 ₂	49→51	0.60244	3.6234	342.17			
$\begin{array}{c cccc cccccccccccccccccccccccccccccc$		48→50	0.56013	3.8288	323.82			
$\begin{array}{c cccc} & 47 \rightarrow 50 & 0.56753 & 4.5086 & 271.38 & \\ \hline Figure 1.5 & 47 \rightarrow 51 & 0.64115 & 4.7165 & 262.87 & \\ \hline PBE0/cc-pVDZ/PCM & & & & & & & & & & & & & & & & & & &$		48→51 47 50	0.40839	4.4190	280.57			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15 T.	47→50 47 ⇒51	0.56755	4.5686	271.38			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PBE0/cc-pVD2	Z/PCM	0.04113	4.7105	202.07			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Excited state	Transition	CI coeff.	ΔΕ (eV)	∆E (nm)	Oscillator strenath		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S ₁	48→50	0.59442	4.0736	304.36	0.0000		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S ₂	49→50	0.67401	4.4770	276.94	0.1719		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S_3	48→51	0.55471	4.6451	266.91	0.0000		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S ₄	49→51	0.66801	5.0462	245.70	0.4533		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S₅	46→50	0.54092	5.1121	242.53	0.0000		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S_6	47→50	0.66824	5.5953	221.59	0.0057		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T ₁	49→50	0.64761	3.1525	393.29			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T_2	49→51	0.59013	3.6551	339.21			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T_3	48→50	0.55512	3.8170	324.82			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T_4	46→50	0.38253	4.3949	282.11			
I_6 47→51 0.65219 4.7563 260.68 PBE0/aug-cc-pVDZ/PCM Excited state Transition Cl coeff. ΔE (eV) ΔE (nm) Oscillator strength strength of the stres	T₅	47→50	0.55463	4.6216	268.27			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T ₆ PBE0/aug-cc-	47→51 bVDZ/PCM	0.65219	4.7563	260.68			
$\begin{array}{c c} \textbf{Lxcread state} & \textbf{rranshon} & \textbf{Cr Ccent.} & \textbf{LL} (eV) & \textbf{LL} (mr) & \textbf{strength} \\ \hline S_1 & 48 \rightarrow 50 & 0.58676 & 4.0270 & 307.88 & 0.0000 \\ \hline S_2 & 49 \rightarrow 50 & 0.68775 & 4.3322 & 286.19 & 0.2005 \\ \hline S_3 & 48 \rightarrow 51 & 0.55631 & 4.5731 & 271.12 & 0.0003 \\ \hline S_4 & 49 \rightarrow 51 & 0.682288 & 4.8106 & 257.73 & 0.4253 \\ \hline S_5 & 46 \rightarrow 50 & 0.55174 & 5.0524 & 245.39 & 0.0003 \\ \hline S_6 & 47 \rightarrow 50 & 0.67886 & 5.4633 & 226.94 & 0.0081 \\ \hline T_1 & 49 \rightarrow 50 & 0.64799 & 3.1135 & 398.21 & \\ \hline T_2 & 49 \rightarrow 51 & 0.60668 & 3.5999 & 344.41 & \\ \hline T_3 & 48 \rightarrow 50 & 0.54892 & 3.7993 & 326.33 & \\ \hline T_5 & 47 \rightarrow 50 & 0.57000 & 4.5487 & 272.57 & \\ \hline T_6 & 47 \rightarrow 51 & 0.65358 & 4.7022 & 263.68 & \\ \hline \textbf{PBE0/aug-cc-pVTZ/PCM} \\ \hline \textbf{Excited state} & \textbf{Transition} & \textbf{Cl coeff.} & \textbf{\Delta E} (eV) & \textbf{\Delta E} (nm) \\ \hline S_1 & 48 \rightarrow 50 & 0.58965 & 4.0377 & 307.07 & 0.0000 \\ \hline S_2 & 49 \rightarrow 51 & 0.66287 & 4.3808 & 226.27 & 0.41125 \\ \hline S_5 & 46 \rightarrow 50 & 0.54844 & 5.1023 & 243.00 & 0.0004 \\ \hline S_4 & 49 \rightarrow 51 & 0.662827 & 5.6124 & 220.91 & 0.0363 \\ \hline T_1 & 49 \rightarrow 50 & 0.65104 & 3.1375 & 395.17 & \\ \hline T_2 & 49 \rightarrow 51 & 0.60161 & 3.6182 & 342.67 & \\ \hline T_3 & 48 \rightarrow 50 & 0.55248 & 3.7934 & 326.84 & \\ \hline T_4 & 48 \rightarrow 51 & 0.40198 & 4.4090 & 281.21 & \\ \hline T_5 & 47 \rightarrow 50 & 0.57164 & 4.5982 & 269.64 & \\ \hline T_6 & 47 \rightarrow 50 & 0.57164 & 4.5982 & 269.64 & \\ \hline T_6 & 47 \rightarrow 50 & 0.57164 & 4.5982 & 269.64 & \\ \hline T_6 & 47 \rightarrow 50 & 0.57164 & 4.5982 & 269.64 & \\ \hline T_6 & 47 \rightarrow 50 & 0.57164 & 4.5982 & 269.64 & \\ \hline T_6 & 47 \rightarrow 50 & 0.57164 & 4.5982 & 269.64 & \\ \hline T_6 & 47 \rightarrow 50 & 0.57164 & 4.5982 & 269.64 & \\ \hline T_6 & 47 \rightarrow 50 & 0.57164 & 4.5982 & 269.64 & \\ \hline T_6 & 47 \rightarrow 50 & 0.57164 & 4.5982 & 269.64 & \\ \hline T_6 & 47 \rightarrow 50 & 0.57164 & 4.5982 & 269.64 & \\ \hline T_6 & 47 \rightarrow 50 & 0.57164 & 4.5982 & 269.64 & \\ \hline T_6 & 47 \rightarrow 50 & 0.57164 & 4.5982 & 269.64 & \\ \hline T_6 & 47 \rightarrow 50 & 0.57164 & 4.5982 & 269.655 & \\ \hline \ \end{tabular}$	Excited state	Transition	Cloooff		AE (nm)	Oscillator		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Exciled State	Transition	Ci coen.	$\Delta E (ev)$		strength		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S ₁	48→50	0.58676	4.0270	307.88	0.0000		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S ₂	49→50	0.68775	4.3322	286.19	0.2005		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S ₃	48→51	0.55631	4.5731	271.12	0.0003		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S_4	49→51	0.68288	4.8106	257.73	0.4253		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S_5	46→50	0.55174	5.0524	245.39	0.0003		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S ₆	47→50 40 50	0.67886	5.4633	226.94	0.0081		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		49→50 40 51	0.64799	3.1135	398.21			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		49→51 49 50	0.60668	3.5999	344.41			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 T	40→30 49 .51	0.04092	3.7993	320.33			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T_	40→51 47 \50	0.40558	4.5055	204.02			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T ₆	47→50 47→51	0.65358	4.7022	263.68			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PBE0/aug-cc-pVTZ/PCM							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Excited state	Transition	CI coeff.	∆E (eV)	ΔΕ (nm)	Oscillator strength		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S ₁	48→50	0.58965	4.0377	307.07	0.0000		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S_2	49→50	0.68760	4.3703	283.70	0.2118		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S ₃	48→51	0.56046	4.6137	268.73	0.0004		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S ₄	49→51	0.68287	4.8380	256.27	0.4125		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S₅	46→50	0.54684	5.1023	243.00	0.0004		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S_6	49→52	0.66282	5.6124	220.91	0.0363		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		49→50	0.65104	3.1375	395.17			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		49→51 49 50	0.60161	3.0102	342.07			
$T_4 40 \rightarrow 51 0.41090 4.4090 201.21 T_5 47 \rightarrow 50 0.57164 4.5982 269.64 T_6 46 \rightarrow 50 0.39009 4.8327 256.55 T_6 T_6 $		40→5U 18 .51	0.00248	3.1934	320.84 201 21			
$T_6 = 46 \rightarrow 50 = 0.39009 = 4.8327 = 256.55 =$		40→01 47 \50	0.41090	4.4090	201.21			
	Τ _e	46→50	0.39009	4.8327	256.55			

Table S6A. Singlet-singlet and singlet-triplet TD-DFT calculations from the S_0 optimised geometry of TT at the same computational level. Molecular orbitals involved, largest coefficients in the CI expansion, vertical excitation energies (in eV and nm) and oscillator strengths for each of the first six singlet and triplet excited states are reported. Note that singlet-triplet oscillator strengths of singlet-triplet excitations are set to zero due to the neglected spin-orbital coupling in the triplet TD-DFT calculation in Gaussian09.

TT TD-DFT						
B3LYP/6-31+G	6(d)/PCM					
Excited state	Transition	CI coeff.	ΔΕ (eV)	∆E (nm)	Oscillator strength	
S ₁	36→38	0.60651	3.8812	319.45	0.0000	
S ₂	37→38	0.67265	4.1862	296.17	0.1343	
S ₃	36→39	0.60022	4.3682	283.83	0.0001	
S ₄	37→39	0.66616	4.6872	264.51	0.4323	
S₅	34→38	0.59002	5.0525	245.39	0.0001	
S ₆	$35 \rightarrow 38$	0.66461	5.3603	231.30	0.0070	
	37→38 27 20	0.65548	3.1055	399.24		
	37→39 36 38	0.01011	3.0020	349.00		
T.	36→39	0.50504	2.0039 4 2691	290.42		
T ₅	35→38	0.58950	4.3931	282.22		
T ₆	35→39	0.67046	4.6328	267.62		
B3LYP/cc-pVD	DZ/PCM					
Excited state	Transition	CI coeff.	ΔΕ (eV)	∆E (nm)	Oscillator strength	
S ₁	36→38	0.62082	3.9000	317.91	0.0000	
S ₂	37→38	0.66121	4.2868	289.22	0.1125	
S ₃	36→39	0.61022	4.4199	280.51	0.0000	
S ₄	37→39	0.65029	4.9034	252.85	0.4144	
S₅	34→38	0.59336	5.0273	246.62	0.0000	
S ₆	$35 \rightarrow 38$	0.65545	5.4358	228.09	0.0075	
	37→38 27 .20	0.65500	3.1233	396.97		
12 Ta	37→39 36 <u>→</u> 38	0.59797	3.5974	344.03		
T.	36→39	0.57002	4 2772	289.87		
T ₅	35→38	0.56784	4.4398	279.26		
T ₆	34→38	0.47271	4.6891	264.41		
B3LYP/aug-co	-pVDZ/PCM				- <i>m</i> -	
Excited state	Transition	CI coeff.	∆E (eV)	ΔΕ (nm)	Oscillator strength	
S ₁	36→38	0.60618	3.8415	322.75	0.0000	
S ₂	37→38	0.67902	4.1191	301.00	0.1245	
S₃	36→39	0.60031	4.3132	287.46	0.0003	
S_4	37→39	0.67238	4.6447	266.94	0.4156	
S ₅	$34 \rightarrow 38$	0.60663	4.9903	248.45	0.0002	
56 T	37→40 37 .38	0.66393	5.3789	230.50	0.0245	
11 Ta	37→30 37 \30	0.00002	3.0754	403.15		
T ₂	36→38	0.55981	3 6470	339.96		
T ₄	36→39	0.52325	4.2100	294.50		
T ₅	35→38	0.59019	4.3629	284.18		
T ₆	35→39	0.67319	4.6218	268.26		
B3LYP/aug-cc	-pVTZ/PCM				Ossillatar	
Excited state	Transition	CI coeff.	∆E (eV)	∆E (nm)	strength	
S ₁	36→38	0.60623	3.8613	321.10	0.0000	
S ₂	37→38	0.67835	4.1630	297.83	0.1306	
S ₃	36→39	0.60044	4.3550	284.69	0.0004	
S_4	37→39	0.67189	4.6746	265.23	0.4072	
5₅ S	34→38 37 . 40	0.60113	5.0446	245.78	0.0002	
3 ₆	37 .32	0.00720	0.0120 3 1002	230.70	0.0251	
	37→39	0.61709	3.5561	348 65		
T ₂	36→38	0.56126	3.6549	339.22		
T₄	36→39	0.52590	4.2533	291.50		
T ₅	35→38	0.59228	4.4199	280.52		
T ₆	34→38	0.52119	4.7022	263.67		

Table S6B. Singlet-singlet and singlet-triplet TD-DFT calculations from the S_0 optimised geometry of TT at the same computational level. Molecular orbitals involved, largest coefficients in the CI expansion, vertical excitation energies (in eV and nm) and oscillator strengths for each of the first six singlet and triplet excited states are reported. Note that singlet-triplet oscillator strengths of singlet-triplet excitations are set to zero due to the neglected spin-orbital coupling in the triplet TD-DFT calculation in Gaussian09.

CAM-B3L YP/6-31+G(d)/PCM C/ coeff. ΔE (eV) ΔE (nm) Oscillator S1 36-38 0.52009 4.2047 294.87 0.0000 S2 37-38 0.68139 4.6674 266.64 0.4649 S3 37-39 0.67159 5.0596 245.05 0.10005 S4 34-39 0.40784 5.2190 237.56 0.00005 S5 37-40 0.66628 5.8315 212.61 0.0457 T2 37-39 0.58453 3.6375 340.85 T2 37-39 0.58451 4.8320 256.59 - T5 35-39 0.45872 5.1073 242.76 - CAM-B3LYP/cc-pVDZ/PCM Excited state Transition C/ coeff. ΔE (eV) ΔE (nm) Strength S1 36-38 0.51774 4.2432 292.20 0.0000 S2 37-38 0.68966 4.8303 256.68 0.3797 S3 34-39 0.4	TT TD-DFT							
Excited stateTransitionCl coeff. Coeff. ΔE (eV) ΔE (nm)Oscillator strength strength strengthS136-380.520094.2047294.870.0000S237-380.681394.6674265.640.4649S337-390.671595.059624.050.1605S434-390.407845.2190237.560.0000S536-390.423665.7520215.550.0005S537-400.666285.8315212.610.0457T137-390.542433.6375340.85-T237-390.545433.6375340.85-T535-390.452725.1073242.76-CAM-B3LYP/cc-PVDZ/PCWVVME (nm)Strength strengthS136-380.517744.2432292.200.00001S237-380.689664.2303256.680.3797S334-390.417885.2058238.160.0001S437-390.573813.671137.73-T336-380.625723.1848389.30-T535-390.437865.8253212.440.0000S635-380.457645.1632240.13-T535-390.611114.9488250.53-T635-380.457645.1632240.01-T635-380.457645.1632240.000.0001 <th>CAM-B3LYP/6</th> <th>-31+G(d)/PC</th> <th>М</th> <th></th> <th></th> <th></th>	CAM-B3LYP/6	-31+G(d)/PC	М					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Excited state	Transition	CI coeff.	ΔΕ (eV)	ΔΕ (nm)	Oscillator strenath		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S ₁	36→38	0.52009	4.2047	294.87	0.0000		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S_2	37→38	0.68139	4.6674	265.64	0.4649		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S ₃	37→39	0.67159	5.0596	245.05	0.1605		
$\begin{array}{c cccccc} & S_{5} & 36-39 & 0.42366 & 5.7520 & 215.55 & 0.0005 \\ S_{6} & 37-40 & 0.66628 & 5.8315 & 212.61 & 0.0457 \\ T_{1} & 37-38 & 0.62423 & 3.1722 & 390.85 & - \\ T_{3} & 36-38 & 0.51013 & 3.9847 & 311.15 & - \\ T_{4} & 34-39 & 0.47581 & 4.8320 & 256.59 & - \\ T_{5} & 35-39 & 0.58278 & 4.8989 & 253.09 & - \\ T_{5} & 35-38 & 0.45372 & 5.1073 & 242.76 & - \\ \hline \hline$	S_4	34→39	0.40784	5.2190	237.56	0.0000		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S ₅	36→39	0.42386	5.7520	215.55	0.0005		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S ₆	37→40	0.66628	5.8315	212.61	0.0457		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T ₁	37→38	0.62423	3.1722	390.85			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T ₂	37→39	0.58453	3.6375	340.85			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T ₃	36→38	0.51013	3.9847	311.15			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T_4	34→39	0.47581	4.8320	256.59			
16 35→38 0.453/2 5.10/3 242.76 CAM-B3L YP/cc-pVDZ/PCW Excited state Transition Cl coeff. ΔE (eV) ΔE (mn) Oscillator strength strengt		35→39	0.58278	4.8989	253.09			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		35→38 c-pVDZ/PCN	0.45372	5.1073	242.76			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Excited state	Transition	CI coeff.	ΔΕ (eV)	ΔΕ (nm)	Oscillator		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	c	26.20	0 51774	4 2422	202.20	strength		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51 S	30→30 27 .20	0.51774	4.2432	292.20	0.0000		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52 S.	37→30 34 <u>→</u> 30	0.00900	4.0303 5.2058	238.16	0.0797		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S ₄	37→39	0.41700	5 2733	235.10	0.0001		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S₅	36→39	0.43788	5.8253	212.84	0.0000		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S ₆	35→38	0.66120	6.0137	206.17	0.0070		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T₁	37→38	0.62572	3.1848	389.30			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T ₂	37→39	0.57381	3.6711	337.73			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T_3	36→38	0.50681	3.9838	311.22			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T_4	34→39	0.47584	4.7630	260.31			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T ₅	35→39	0.61111	4.9488	250.53			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T ₆	35→38	0.47564	5.1632	240.13			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CAM-B3LYP/a	ug-cc-pVDZ	/PCM			Ossillator		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Excited state	Transition	CI coeff.	∆E (eV)	ΔΕ (nm)	strength		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S ₁	36→38	0.50032	4.1772	296.81	0.0000		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S ₂	37→38	0.68103	4.6026	269.38	0.4177		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S₃	37→39	0.67202	4.9985	248.04	0.1747		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S_4	34→38	0.39337	5.1659	240.00	0.0001		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55	3b→39	0.40185	5.6807	218.25	0.0007		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56 T	37→40 27 .20	0.60431	5./1/8 2.1/FC	216.84	0.0393		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$37 \rightarrow 30$	0.02141	3.1430	394.10			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 T.	37→39 36 <u>→</u> 39	0.39142	3 9519	343.25			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T4	34→39	0.45117	4 7848	259 12			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T ₅	35→39	0.59669	4.8952	253.28			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T ₆	35→38	0.47034	5.0678	244.65			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CAM-B3LYP/aug-cc-pVTZ/PCM							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Excited state	Transition	CI coeff.	∆E (eV)	ΔΕ (nm)	Oscillator strenath		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S ₁	36→38	0.51089	4.1823	296.45	0.0000		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S ₂	37→38	0.68075	4.6354	267.47	0.4283		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S ₃	37→39	0.67109	5.0341	246.29	0.1586		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S_4	34→39	0.38542	5.2163	237.68	0.0001		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S ₅	37→40	0.59101	5.7097	217.15	0.0374		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S ₆	36→39	0.40595	5.7239	216.61	0.0029		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T₁ Ŧ	37→38	0.62612	3.1875	388.97			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		37→39	0.58308	3.6388	340.73			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		30→38	0.49912	3.9455	314.24			
T_6 $35 \rightarrow 38$ 0.46041 5.1263 241.86		৩4→ ৩৬ ৫৯ , ৫০	0.40909	4.0300 1 0520	200.39			
	Τ _ε	35→38	0.46041	5.1263	241.86			

Table S6C. Singlet-singlet and singlet-triplet TD-DFT calculations from the S_0 optimised geometry of TT at the same computational level. Molecular orbitals involved, largest coefficients in the CI expansion, vertical excitation energies (in eV and nm) and oscillator strengths for each of the first six singlet and triplet excited states are reported. Note that singlet-triplet oscillator strengths of singlet-triplet excitations are set to zero due to the neglected spin-orbital coupling in the triplet TD-DFT calculation in Gaussian09.

TT TD-DFT					
ωB97XD/6-31-	⊧G(d)/PCM				
Excited state	Transition	CI coeff.	ΔΕ (eV)	ΔΕ (nm)	Oscillator
S₁	36→38	0.52587	4.2216	293.69	0.0000
S ₂	37→38	0.67997	4.6961	264.02	0.4820
S ₃	37→39	0.66879	5.0882	243.67	0.1554
S_4	34→39	0.42267	5.2249	237.29	0.0000
S ₅	36→39	0.44143	5.8149	213.22	0.0004
S_6	37→40	0.65352	6.0860	203.72	0.0598
T₁	37→38	0.63151	3.2698	379.19	
	37→39	0.58708	3.7142	333.81	
	30→38 24 .20	0.51779	4.0237	308.14	
14 T-	34→39 35 <u></u> 30	0.47933	4.0504	250.19	
T ₆	35→38	0.43368	5.1770	239.49	
ωB97XD/cc-p	VDZ/PCM				
Excited state	Transition	CI coeff.	ΔΕ (eV)	ΔΕ (nm)	Oscillator
S.	36→38	0.52786	4 2667	290 59	0 0000
S ₂	37→38	0.68827	4.8481	255.74	0.3935
S ₃	34→39	0.42825	5.2156	237.72	0.0001
S ₄	37→39	0.68243	5.2930	234.24	0.2068
S ₅	36→39	0.45387	5.8886	210.55	0.0000
S ₆	35→38	0.65964	6.0167	206.07	0.0057
T ₁	37→38	0.63250	3.2879	377.10	
T_2	37→39	0.57608	3.7595	329.79	
	36→38	0.51862	4.0329	307.43	
	34→39 25 20	0.47992	4.8027	258.15	
	35→39 35→38	0.56620	5.0036	247.79	
ωB97XD/aug-	cc-pVDZ/PCI	M	0.2002	200102	
Excited state	Transition	CI coeff.	ΔΕ (eV)	ΔΕ (nm)	Oscillator strength
S1	36→38	0.50933	4.2134	294.26	0.0000
S ₂	37→38	0.67949	4.6436	267.00	0.4376
S₃	37→39	0.66886	5.0366	246.17	0.1661
S_4	34→38	0.40688	5.1799	239.36	0.0001
S₅	36→39	0.42653	5.7617	215.19	0.0010
S ₆	37→40	0.53338	5.9540	208.24	0.0495
T ₁	37→38	0.62805	3.2528	381.16	
	$37 \rightarrow 39$	0.59381	3.7023	334.88	
1 ₃ T	30→30 24 .20	0.50014	4.0141	300.07	
T-	34→39 35 <u></u> 30	0.45901	4.0159	257.45	
T ₆	35→38	0.44499	5.1517	240.67	
ωB97XD/aug-	cc-pVTZ/PCM	Л			
Excited state	Transition	CI coeff.	ΔΕ (eV)	ΔΕ (nm)	Oscillator strength
S1	36→38	0.52021	4,2151	294.14	0.0000
S ₂	37→38	0.67868	4.6710	265.43	0.4511
S ₃	37→39	0.66707	5.0718	244.46	0.1491
S_4	34→39	0.40935	5.2217	237.44	0.0001
S ₅	36→39	0.43502	5.7986	213.82	0.0016
S ₆	37→40	0.48862	5.9189	209.47	0.0521
T₁ T	37→38	0.63159	3.2857	377.35	
	37→39	0.58615	3.7263	332.73	
	30→38 3420	0.51083	4.0090	309.26	
14 T-	<i>১</i> 4→১৪ 35∖२0	0.40709	4.0004 5 0036	200.20	
\dot{T}_6	35→38	0.43335	5.2026	238.31	

Table S6D. Singlet-singlet and singlet-triplet TD-DFT calculations from the S_0 optimised geometry of TT at the same computational level. Molecular orbitals involved, largest coefficients in the CI expansion, vertical excitation energies (in eV and nm) and oscillator strengths for each of the first six singlet and triplet excited states are reported. Note that singlet-triplet oscillator strengths of singlet-triplet excitations are set to zero due to the neglected spin-orbital coupling in the triplet TD-DFT calculation in Gaussian09.

TT TD-DFT					
M062X/6-31+0	6(d)/PCM				
Excited state	Transition	CI coeff.	ΔΕ (eV)	ΔΕ (nm)	Oscillator
 C	36 .38	0.52086	4 1253	200.54	strength
01 S	37 <u>3</u> 8	0.55500	4.1200	266.00	0.0000
52 S	$37 \rightarrow 30$	0.00400	4.0437	200.99	0.4713
53	37→39	0.07230	5.0600	240.03	0.1399
54	$34 \rightarrow 39$	0.46864	5.0949	243.35	0.0001
55	37→40	0.66710	5.7005	217.50	0.0394
5 ₆	36→39	0.47122	5.7319	216.30	0.0000
	37→38	0.63891	3.4036	364.27	
1 ₂	37→39	0.55250	3.7854	327.54	
	36→38	0.53252	3.9625	312.90	
I ₄	34→39	0.50437	4.7815	259.30	
1 ₅	35→39	0.58421	5.0390	246.05	
	35→38	0.47643	5.1493	240.78	
					Oscillator
Excited state	Transition	CI coeff.	∆E (eV)	ΔΕ (nm)	strength
S₁	36→38	0.54350	4.1420	299.33	0.0000
S ₂	37→38	0.69308	4,7952	258.56	0.4089
S ₂	34→39	0.48268	5.0820	243.97	0.0001
S₄	37→39	0.68263	5 2472	236 29	0 1771
S₅	36→39	0 48486	5 8100	213 40	0,0000
S	35→38	0.66696	6.0283	205.67	0.0133
С6 Т.	37_38	0.600000	3 4227	362.25	0.0100
T.	37_30	0.53731	3 8381	323.04	
T2 T.	36 \38	0.53667	3 0581	313 24	
т.	30-→30 34 \30	0.53007	1 7378	261.60	
	34→39 35 30	0.51205	5.0051	201.09	
T.	35 \38	0.39472	5.0951	243.34	
M062X/aug-co	-pVDZ/PCM	0.47500	0.2100	201.00	
Evolted state	Transition	Class		AE (nm)	Oscillator
Excited state	Transition	Ci coen.	$\Delta E (ev)$	ΔE (mm)	strength
S ₁	36→38	0.52270	4.0902	303.13	0.0000
S ₂	37→38	0.68361	4.5726	271.15	0.4256
S₃	37→39	0.67251	4.9868	248.62	0.1497
S_4	34→39	-0.44478	5.0473	245.65	0.0001
S₅	37→40	0.63040	5.5516	223.33	0.0310
S_6	36→39	0.45166	5.6505	219.42	0.0010
T_1	37→38	0.63324	3.3737	367.50	
T_2	37→39	0.55771	3.7544	330.24	
T_3	36→38	0.51465	3.9284	315.61	
T_4	34→39	-0.48380	4.7397	261.59	
T_5	35→39	0.60006	5.0309	246.45	
T ₆	35→38	0.49362	5.1025	242.98	
M062X/aug-co	-pVTZ/PCM				.
Excited state	Transition	CI coeff.	ΔΕ (eV)	ΔΕ (nm)	USCIllator strength
S1	36→38	0.52712	4.0981	302.54	0.0000
S ₂	37→38	0.68255	4,6157	268 62	0.4358
S ₂	37→39	0.67210	5.0257	246 70	0.1388
S,	34→39	0.44306	5,1339	241.50	0.0002
S _c	37→40	0.61933	5 5993	221 43	0.0331
S-	36-30	0.01333	5 7077	217 22	0.0015
U6 T.	37-38	0 63200	3 4045	364 18	
T ₂	37-39	0.55617	3 7963	326 59	
τ ₂	36-38	0.51945	3 9364	314 07	
13 T	30→30 34_\30	0.01940	1 8282	256.26	
τ ₋	35_30	0.50651	5 1025	200.20	
Ť.	35→38	0.49873	5.1753	239.57	
- 0					

Table S6E. Singlet-singlet and singlet-triplet TD-DFT calculations from the S_0 optimised geometry of TT at the same computational level. Molecular orbitals involved, largest coefficients in the CI expansion, vertical excitation energies (in eV and nm) and oscillator strengths for each of the first six singlet and triplet excited states are reported. Note that singlet-triplet oscillator strengths of singlet-triplet excitations are set to zero due to the neglected spin-orbital coupling in the triplet TD-DFT calculation in Gaussian09.

TT TD-DFT					
PBE0/6-31+G(d)/PCM				
Excited state	Transition	CI coeff.	ΔΕ (eV)	∆E (nm)	Oscillator
S.	36_38	0 50103	4 0457	306.46	0.0000
O1 S	37 38	0.69196	4 2916	282.06	0.0000
3 ₂	37→30	0.00100	4.3010	202.90	0.1955
53	30→39 27 20	0.57393	4.0400	200.00	0.0001
54	37→39	0.67732	4.8480	255.74	0.4009
55	34→38	0.53950	5.2142	237.78	0.0001
5 6	35→38	0.67683	5.5427	223.69	0.0064
	37→38	0.65103	3.0959	400.48	
1 ₂	37→39	0.60841	3.5999	344.41	
T_3	36→38	0.55937	3.8173	324.80	
T_4	36→39	0.44752	4.4797	276.77	
T_5	35→38	0.57111	4.5681	271.42	
	35→39	0.64289	4.7349	261.85	
PBE0/cc-pvD/					Oscillator
Excited state	Transition	CI coeff.	∆E (eV)	∆E (nm)	strength
S₁	36→38	0.60364	4.0766	304.13	0.0000
S ₂	37→38	0.67235	4.4896	276.16	0.1645
S ₃	36→39	0.57434	4.6984	263.89	0.0000
S₄	37→39	0.66685	5.0592	245.07	0.3966
S ₅	34→38	0.53830	5.2091	238.01	0.0000
S	35→38	0.67064	5 6178	220 70	0.0056
υ Τ.	37→38	0.65077	3 1175	397 70	
T _o	37→39	0 59179	3 6448	340.16	
T.	36-38	0.56773	3 8196	324 60	
T.	36 30	0.00773	4 4646	277 70	
	30→39 25,29	0.40404	4.4040	267.70	
	35 30	0.55660	4.0299	207.79	
PBE0/aug-cc-	bVDZ/PCM	0.04195	4.7700	259.40	
Evolted state	Transition	Cl 000#		AE (nm)	Oscillator
Excited state	Transition	Ci coeff.	$\Delta E (ev)$	ΔE (nm)	strength
S1	36→38	0.58531	4.0185	308.53	0.0000
S_2	37→38	0.68675	4.3150	287.34	0.1761
S ₃	36→39	0.56848	4.5906	270.08	0.0003
S_4	37→39	0.68201	4.8045	258.06	0.3900
S₅	34→38	0.56079	5.1533	240.59	0.0003
S_6	35→38	0.67849	5.4869	225.96	0.0103
T ₁	37→38	0.64900	3.0700	403.86	
T_2	37→39	0.61413	3.5731	347.00	
T_3	36→38	0.54738	3.7893	327.20	
T ₄	36→39	0.44313	4.4229	280.33	
T ₅	35→38	0.57485	4.5467	272.69	
T_6	35→39	0.65386	4.7184	262.77	
PBE0/aug-cc-	pVTZ/PCM				
Excited state	Transition	CI coeff.	∆E (eV)	∆E (nm)	Oscillator
S.	36→38	0 58767	4 0284	307 77	0.0000
S.	37-38	0.88889	4 3513	284 94	0.0000
52 S-	36_30	0.57127	4 6270	267.04	0.0004
C 3	37_\30	0.68204	4 8212	256.63	0 3706
S4 S-	34_\38	0.00204	5 108/	238 50	0.0730
05 C	3 4 →30 37 √10	0.00000	5 6079	200.00	0.0003
С6 Т	37 . 20	0.01990	3,0070	400 95	0.0200
11 T	31→30 37 .20	0.00100	3.0930	400.00	
	31→39 26 20	0.00902	3.0092	343.43 207 75	
	30→38 26 20	0.00010	3.1029	321.13 277.05	
14 T	30→39 25 30	0.44//0	4.4000	211.90	
	30→38 25 30	0.57594	4.5942	209.01	
6	JJ→38	0.00407	4.7004	Z00.01	