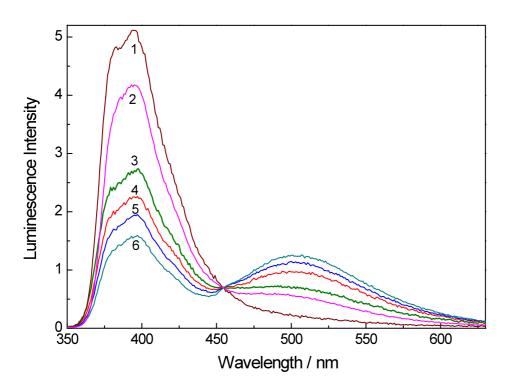
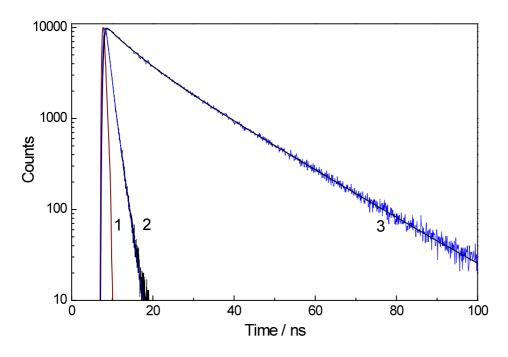
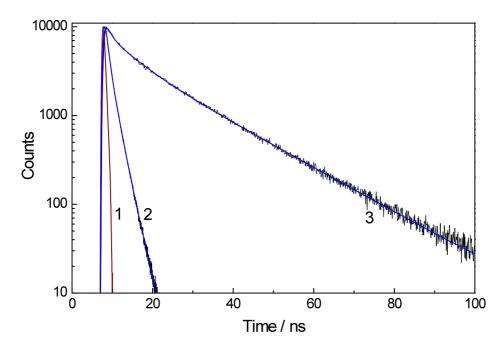
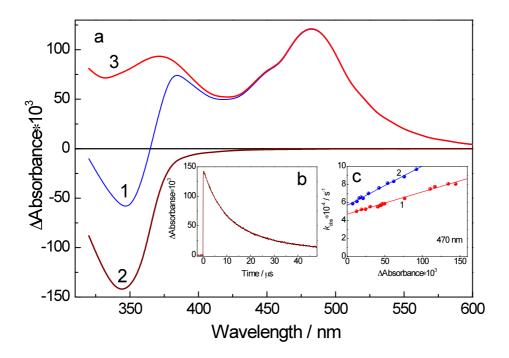

Photophysics of 1,8-naphthalimide / Ln(III) dyads (Ln = Eu, Gd): napthalimide → Eu(III) energy-transfer from both singlet and triplet states.

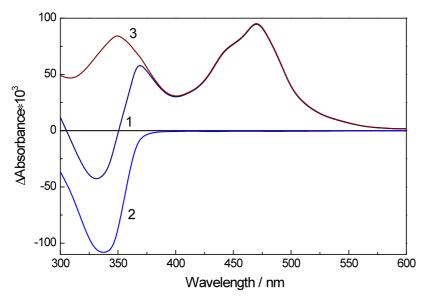

Victor F. Plyusnin,^{*a*,*} Arkady S. Kupryakov, ^{*a*} Vyacheslav P. Grivin, ^{*a*} Alexander H. Shelton, ^{*b*} Igor V. Sazanovich, ^{*b*} Anthony J. H. M. Meijer, ^{*b*} Julia A. Weinstein ^{*b*} and Michael D. Ward ^{*b*,*}

Electronic supporting information


Figures S1 – S7: Additional figures (absorption spectra, luminescence spectra, kinetic traces, triplet-triplet absorption spectra) for the three compounds.


Fig. S1. UV/Vis absorption spectra of Gd•L in water: (1) concentration 4.27×10^{-5} M (path length 1 cm); and (2) concentration 0.79×10^{-2} M (path length 54 µm). The calculated spectrum of a dimer is presented as curve (3).


Fig. S2. Luminescence spectra of Gd•L in water with excitation a 320 nm. Spectra (1) – (6) were recorded at concentrations 1.14×10^{-4} , 1.37×10^{-3} , 2.04×10^{-3} , 4.52×10^{-3} , 7.43×10^{-3} and 1.02×10^{-2} M, respectively. Spectra (1) and (2) were recorded using 1 and 0.1 cm cuvettes; spectra (3) – (6) were recorded using a 54 µm cuvette. Normalization of spectra recorded with different path lengths was made with the help of the isosbestic point.


Fig. S3. Luminescence decay kinetics of Eu•L in water with excitation at 320 nm. Curve (1): instrument response function. Curves (2) and (3): decay kinetics at 395 and 505 nm, respectively (Eu•L concentration, 1.75×10^{-2} M; 54 µm cuvette). Solid lines on the kinetic traces are the calculated fits using a three exponential approximation (parameters in Table 1).

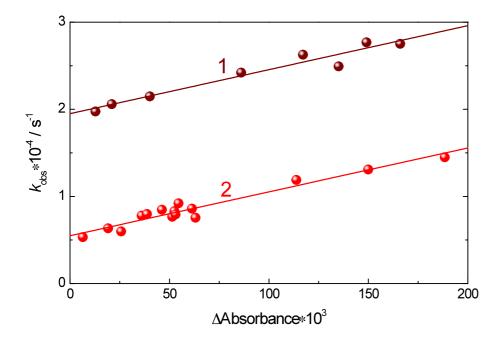

Fig. S4. Luminescence decay kinetics of Gd•L in water with excitation at 320 nm. Curve (1): instrument response function. Curve (2): decay kinetics at 393 nm at low Gd•L concentration $(1.13 \times 10^{-4} \text{ M}, 1 \text{ cm} \text{ cuvette})$. Curve (3): decay kinetics at 500 nm at high Gd•L concentration $(7.9 \times 10^{-3} \text{ M}, 54 \text{ µm} \text{ cuvette})$. Solid lines on the kinetic traces are the calculated fits using a three exponential approximation (parameters in Table 1).

Fig. S5. The triplet-triplet absorption spectrum (**a**) and its decay (**b**) of Gd•L in deoxygenated water after laser excitation at 355 nm. Panel (**c**) shows the dependence of k_{obs} for the T-T absorption decay at 470 nm on the value of the initial absorption (ΔA), for both Gd•L (line 1) and Eu•L (line 2). In frame (**a**): (1), the measured differential T-T absorption; (2), the UV/Vis spectrum of the complex showing the naphthalimide absorption; (3), the difference between (1) and (2), *i.e.* the T-T absorption spectrum.

Fig. S6. The triplet-triplet absorption spectrum of Eu•L in deoxygenated CH₃CN after laser excitation at 355 nm. Curve (1) is the measured differential T-T absorption; curve (2) is the UV/Vis spectrum of the complex showing the naphthalimide absorption; curve (3) is the difference between (1) and (2), *i.e.* the T-T absorption spectrum.

Fig. S7. Dependence of k_{obs} for the T-T absorption decay at 470 nm on the value of initial absorption (ΔA) for Eu•L (line 1) and Gd•L (line 2) in CH₃CN.