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S1.Methods  

S1.1 Vibronic Hamiltonian  

The transition between exciton and CT states is accompanied by remarkable rearrangements of the 

nuclear structure.  As anticipated in the main text,  in order to describe the effect of the vibrational 
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motion on the time-evolution of the electronic populations we proposed [R. Improta et al  J. Phys. 

Chem. A, 2009, 113, 15346–15354] a vibronic Hamiltonian, associating to each electronic state an 

harmonic potential energy surface (PES) .  
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In Eq. 3 the coordinates kQ  are orthogonal combinations of the ground state normal modes of each 

unit where the first index (latin) identifies the vibration, while the second one (greek) indicates the 

unit where it is localized, the Hamiltonian is written in dimensionless coordinates and  we neglect 

the effect of inter-units vibrations.  We assume that the PESs share the same set of normal modes 

and frequencies (also with the ground state), while in general each state has a different equilibrium 

position 0 ( )kQ ij  (the couple of indexes in parenthesis specifies the electronic state). 

As described in ref. [R. Improta et al  J. Phys. Chem. A, 2009, 113, 15346–15354], the PESs 

associated to the involved diabatic states | ,j k  can be easily built on the ground of the PESs of the 

ground, cationic, anionic and excited states ( *,  ,  ,  A A A A  , respectively) of each unit. Despite the 

impressive progresses in modern methods for time-propagation of wave packets, like those  based 

on multiconfigurational expansions [H. Beck et al Phys. Rep., 2000, 324, 1-105; 46) 

Multidimensional Quantum Dynamics. MCTDH Theory and Applications, ed. H.-D. Meyer, F. 

Gatti, and G. A. Worth, Wiley VCH, Weinheim, 2009], at the state of the art is still extremely 

challenging to compute the quantum dynamics of a medium-size (dozens of normal modes) system 

including all the nuclear degrees of freedom. Hierarchical representation of the Hamiltonians [E. 

Gindensperger et al, J. Chem. Phys., 2006, 124, 144103-144120;  L. Cederbaum et al. Phys. Rev. 

Lett., 2005, 94, 113003-113006; D. Péicconi et al. J. Chem. Phys., 2012, 136, 244104-244120] 

allow to define few effective vibrational modes that describe accurately the short-time dynamics of 
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the system and represent a very promising technique to treat large-systems, most of all when 

coupled with more approximate (e. g. classical) descriptions of the motion along the less-important 

coordinates of the hierarchy.  The effective modes of the first (most important) block of the 

hierarchy comprises the coordinates that describe the displacement from the ground state geometry 

to the minima of the different coupled PESs.   

In ref. [R. Improta et al  J. Phys. Chem. A, 2009, 113, 15346–15354]  we adopted a similar recipe to 

define a minimal set of effective coordinates for the A2 dimer (in practice we considered the same 

coordinates arising from the hierarchical transformation, after neglecting normal modes  with very 

low-frequency, since they are expected to move more slowly. In this way we selected three 

coordinates on each unit of Ade, that are the ones that physically describe the displacement from the 

minimum of the ground state A , to the minima of the cation, anion and neutral excited states 

*,  ,  A A A  .  

 

S1.2 Diabatic and adiabatic representation of the relaxation superoperator.  

We can describe our system adopting two different basis sets, the diabatic states  ,nb j k  and 

the adiabatic states na  of the eigenstates of the Hamiltonian in Eq.1 in the main text. The two sets 

are connected by an orthogonal transformation so that, saying 
R

b  and 
R

a  the row vectors of the 

diabatic basis sets we have   
R R
a b C . The density operator can be written (since now on we 

drop the “el” subscript) alternatively in the two basis sets (C  real) 

 b T a
R C R R R R

   b ρ b a C ρ C a a ρ a .        (S1) 
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Where the subscript C indicates a vector column. It is useful at this point to switch to a 

superoperator notation m nmn b b  defining the scalar product as 

n m r smn rs Tr b b b b    . The same can be done in the adiabatic basis set a a   ,  

and Tr a a a a         . We then have 

m n
mn

C C mn              (S2) 

which in matrix form becomes (four indices are needed) 

;mn
mn

D mn    or 
R R
aa bb D         (S3) 

In this representation the   operator is written as a linear combination of the basis set of operators 

mn . In matrix form these reads bb aa
C CR R

  bb ρ aa ρ , where we simply sorted the 

operators m nb b  ( m na a ) in a row vector and bb
Cρ  ( aa

Cρ ) are the column vectors of the 

coefficients (i.e. the elements of bρ  and aρ  respectively).   

 In a superoperator formalism   can be expressed like a four-indices matrix ;mn rs  so that 

b bb a aa
C C  Γ ρ Γ ρ . We might choose to insert a dephasing  on the off-diagonal density-matrix 

elements either in the diabatic or in eingestates sets.  The matrix elements in the two representations 

are respectively ;
b
mn rs mn rs    and ;

a
      . To avoid proliferation of 

parameters we attach the same dephasing time constant deph  to any couple of states. Therefore, in 

formulas, the two possible choices for the dephasing (among diabatic or adiabatic states) are 

equivalent to set either  1
; (1 )b

mn rs mr ns rs deph        or 1
; (1 )a

deph           . At this point   

in the other representation can be simply obtained by the relation b a TΓ DΓ D ( D   real). 
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S1.3 Dependence of the long-time limit of the populations on the choice to introduce a 

dephasing among diabatic or adiabatic states 

The two options have a significantly different impact on the dynamics. This can be appreciated 

considering the case *A    (no decay of excitons) and computing the long-time limit of the 

populations (diagonal elements of the density matrix), when the coherences (non diagonal matrix 

elements) have been erased by dephasing (we work now in a generic representation and then 

specialize the results to either bρ  or aρ ).  

From Eq. 4 in the main text we have for diagonal and off-diagonal elements 

( ) ( ) ( ) 0
t

ii ij ji ij ji
j

i t H t t H  


           (S4a) 

 1( ) ( ) ( ) ( ) ( )
t

ik ij jk ij jk deph ik ik kk ii
j

i t H t t H i H t t      


         (S4b) 

The first equation simply indicates that populations reach a stationary limit, while the second one 

has to be considered more carefully.   Since ( ) 0limt ik t   also its derivative must go to zero and 

therefore   

 ( ) ( ) 0ik kk iiH               (S5) 

In the diabatic basis set Eq S5 implies that whenever 0ikH   one has ( ) ( )b b
kk ii     i.e. in the 

stationary limit t   coupled diabatic states become equally populated (of course, if the initial 

state is not coupled either to i  or k  these states remain unpopulated).  On the contrary, since in 

the adiabatic basis sets 0ikH  , Eq. S5 is automatically fulfilled  and therefore the populations of 
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different eigenstates are not bound to be equal. Trivially each adiabatic state conserves its initial 

population.  Actually, Eq. S1a is fulfilled even at t=0 so that, as it should be, at any time the 

populations are equal to their initial value ( ) (0)a at   . Therefore, since in the long time limit 

( ) 0a
    we get ( ) ( (0)),  1,a adiag N   ρ   and  

( ) (0)b a T ρ Cρ C   2( ) (0)b a
ii iC          (S6). 

In Figure S5 the results of the dynamics with a dephasing b
deph  =100 fs are shown. As we proved 

above, the diabatic populations are bound to reach a stationary-state where they are all equal, and 

this happens in a short-time for b
deph =100 fs. Since the ratio between the number of CT and Exc 

states increases as n-1 at the increase of n , the number of units in the oligomer , this automatically 

causes a steep increase of the CT population at the increase of n.  Such phenomenon is probably 

unphysical and introduce a too strong bias in our simulations. 
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S1.4. Changing the values of th and te parameters 

It should be highlighted that changing the relative sign of th and te parameters can have a dramatic 

impact on the dynamics, while the effect of small differences in their absolute values is much more 

moderate. This is shown in detail in Figure S2 that compares the predictions of the electronic 

Hamiltonian for the two set of parameters th =80 cm-1 and te=100 cm-1 (exhibiting the same ratio of 

the values computed in ref. 66) and th =-100 cm-1 and te=100 cm-1. While in the former case the 

results are very similar to the ones reported in Figure 2, for th =-100 cm-1 and te =100 cm-1 the 

extent of population transfer to CT states is strongly reduced. This is trivially due to the fact that, 

with this combination of signs, CT states only couple to the anti-symmetric combination of the Exc 

states, that is weakly absorbing, and gives therefore little contribution to the initial doorway state. 

However, the fact that th  and te have the same sign  can be considered assessed since: (i) this is 

what is computed in ref. 60 of the main text; (ii) Figure S2 indicate that the quality of the simulated 

absorption spectra deteriorates sensibly if th and te are given opposite signs, especially if, as in the 

simpler formulation of our Hamiltonian,  texc=0.; (iii) for th =-100 cm-1 and te =100 cm-1, the CT 

states exhibit  a vanishing oscillator strength for W=1200 cm-1 (a value consistent with the most 

refined QM calculations in solution). On the other hand, ab initio calculations show that adiabatic 

states with dominant CT character bring a non-negligible oscillator strength, comparable with that 

of weak excitons,(see Improta & Barone Angew. Chem., Int. Ed. Engl., 2011, 50, 12016-12019  and 

Lange & Herbert t J. Am. Chem. Soc. 2009,  131, 3913-3922. )  and this can only be explained by a 

coupling with the symmetric (strongly absorbing) combination of the Exc states. 
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Figure S1. Plot of the weighted density of states for A10 and  W=-1400 (top panel), 0 (bottom panel) cm-1 . A lorentzian 
broadening with γ=10 cm-1 is adopted.  The integral over the frequency give the total number of CT (90) and Exc (10) 
diabatic states in the model. The absorption spectrum (in arb units) with same broadening is included for comparison. 

 

. 
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Figure S2. Stick (left panels) and convoluted (right panels) spectra, with a Gaussian with FWHM=500 cm-1 obtained 
for the A2 and A10 systems and for the cases where CT states are more stable (W=-200 cm-1, top panels) or less stable 
(W=1200 cm-1, bottom panels). The results with the choice of the parameters th=te=100 cm-1 adopted in the main text are 
compared with those obtained with the different choices th=80 cm-1, te=100 cm-1 and th=-100 cm-1, te=100 cm-1. 
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Figure S3. Time evolution of the diabatic CT population for A2 (top) and A10 (bottom) systems and for the cases where 
CT states are more stable (W=-14000 cm-1, left panels) or less stable (W=0 cm-1, right panels). The results with the 
choice of the parameters th=te=100 cm-1 adopted in the main text are compared with those obtained with the different 
choices th=80 cm-1, te=100 cm-1 and th=-100 cm-1, te=100 cm-1. 

Electronic Supplementary Material (ESI) for Photochemical & Photobiological Science
This journal is © The Royal Society of Chemistry and Owner Societies 2013



11 

 

 

Figure S4. CT populations in A2 and A10 for three cases: W=-1400 cm-1, R=1200 cm-1; W=-0 cm-1, R=1200 cm-1; W=-0 

cm-1, R=2000 cm-1) 2000 cm-1 and two different choices of the dephasing time: a
deph =∞ (left panels), a

deph = 100 fs 

(right panels). 
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Figure S5.  Time evolution of the diabatic CT and Exc populations for A2 oligomer ( a
deph = , left panels: W=-1400 

cm-1, right panels W=0 cm-1) excited by a laser pulse with FWHM=50 fs, central time t0=250 fs and different carrier 

frequencies c  indicated in the panels and roughly in resonance with the frequencies of the two maxima of the 

absorption spectra in Figure 1 and their average. The excited population ( ) ( )EXC CTP t P t  is normalized to 1 at its 

first maximum (always falling at ~ 280 fs).  The absolute population excited is actually strongly dependent on c  

being respectively 0.32, 0.73, 1 for c =43750, 44200 and 44650 cm-1 (W=-14000 cm-1) and 1, 0.11, 0.08 for 

c =44400, 44850 and 45300 cm-1  (W=0 cm-1) . 
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