Supplementary Information for:

Synthesis and photophysical properties of chlorins bearing 0-4 distinct meso-substituents

Kunche Aravindu, Han-Je Kim, Masahiko Taniguchi, Preston L. Dilbeck, James R. Diers, David F. Bocian, Dewey Holten, and Jonathan S. Lindsey

Table of Contents

	Торіс	Page
1.	Synthesis of a second meso-substituted Western half	S1-S2
2.	Experimental procedures	S2-S3

1. Synthesis of a second meso-substituted Western half

Scheme S1. Exploratory synthesis of a 5-aryltetrahydrodipyrrin (Western half).

The Henry reaction of *p*-anisaldehyde and nitromethane under ultrasound conditions⁵⁹ afforded the nitrovinyl arene **S1** in 73% yield (Scheme S1). Compound **S1** has been reported

and characterized by mp only;^{50,61} full characterization is presented here. The reaction of **S1** and pyrrole in dichloromethane containing InCl₃ at room temperature afforded 2-(2-nitro-1-(4-methoxyphenyl)ethyl)pyrrole **S2** in 74% yield. Compound **S2** was reported and fully characterized by Zhan *et al.* during the course of this work,⁶⁰ and has since been prepared by a number of other methods.⁵²⁻⁵⁶ Treatment of **S2** with mesityl oxide (**2**) in the presence of CsF in anhydrous CH₃CN at 70 °C provided the nitrohexanone adduct in 24% overall yield; two isomers were isolated in 22% (**S3a**) and 2% yield (**S3b**) without stereochemical identification. The reductive cyclization of **S3a** in the presence of excess zinc and acetic acid in ethanol at 0 °C gave *N*-oxide **S4a-O** (52% yield) and the corresponding Western half **S4a** (16% yield).

2. Experimental procedures

1-Methoxy-4-(2-nitrovinyl)benzene (S1). Following a literature procedure,⁵⁹ a mixture of *p*-anisaldehyde (2.43 mL, 20.0 mmol), nitromethane (13.0 mL, 241 mmol), glacial acetic acid (3.30 mL, 57.2 mmol) and ammonium acetate (3.32 g, 43.1 mmol) was sonicated at room temperature for 3 h, causing an increase in reaction temperature to ~55 °C. The nitromethane and glacial acetic acid were removed under reduced pressure. The residue was treated with water (30 mL) and extracted with CH₂Cl₂. The combined organic extract was evaporated under reduced pressure to leave ~10 mL of solvent, whereupon aqueous ethanol was added. The resulting yellow solid was filtered (2.61 g, 73%): mp 86–88 °C (lit mp 84–86 °C;⁵⁰ 86–87 °C⁶¹); ¹H NMR δ 3.88 (s, 3H), 6.96 (d, *J* = 9.0 Hz, 2H), 7.51 (d, *J* = 9.0 Hz, 2H), 7.53 (d, *J* = 13.6 Hz, 1H); ¹³C NMR δ 55.7, 115.1, 122.7, 131.4, 135.2, 139.3, 163.1; Anal. Calcd. for C₉H₉NO₃: C, 60.33; H, 5.06; N, 7.82. Found C, 60.39; H, 5.04; N, 7.80.

2-[(4-Methoxyphenyl)-2-nitroethyl]pyrrole (S2). A stirred solution of **S1** (6.89 g, 38.5 mmol) in CH₂Cl₂ (77.0 mL) containing InCl₃ (852 mg, 3.85 mmol) at 0 °C was treated with pyrrole (26.9 mL, 385 mmol). The mixture was stirred at room temperature for 2 h. After complete conversion as indicated by TLC, the reaction was quenched by the addition of water (80.0 mL). The mixture was extracted with CH₂Cl₂ (3 x 70.0 mL). The combined organic extract was dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by column chromatography (silica, CH₂Cl₂) to give a pale yellow oil (6.98 g, 74%): ¹H NMR δ 3.78 (s, 3H), 4.76 (ABX, ³*J* = 8.0 Hz, ²*J* = 12.0 Hz, 1H), 4.84 (ABX, ³*J* = 6.8 Hz, ³*J* = 8.0 Hz, 1H), 4.95 (ABX, ³*J* = 6.8 Hz, ²*J* = 12.0 Hz, 1H), 6.04–6.07 (m, 1H), 6.14–6.18 (m, 1H), 6.66–6.69 (m, 1H), 6.87 (d, *J* = 8.6 Hz, 2H), 7.14 (d, *J* = 8.6 Hz, 2H), 7.75–7.92 (br, 1H); ¹³C NMR δ 42.4, 55.5, 79.6, 105.7, 108.8, 114.7, 118.3, 129.2, 129.5, 130.0, 159.5; FAB-MS obsd 246.1008, calcd 246.1004 (C₁₃H₁₄N₂O₃); Anal. Calcd. for C₁₃H₁₄N₂O₃: C, 63.40; H, 5.73; N, 11.38. Found C, 63.42; H, 5.70; N, 11.30.

6-(4-Methoxyphenyl)-4,4-dimethyl-5-nitro-6-(2-pyrrolyl)-2-hexanone (S3a, S3b). Cesium fluoride (731 mg, 4.81 mmol, freshly dried by heating to 100 °C under vacuum for 1 h and then cooling to room temperature under argon) was placed in a flask under argon. A mixture of S2 (236 mg, 0.962 mmol) and mesityl oxide (2, 11.0 mL, 96.0 mmol) was transferred by cannula to the flask containing CsF. The mixture was heated and stirred at 70 °C for 4 days. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure. TLC analysis [silica, ethyl acetate/hexanes (1:3)] showed two components with $R_f = 0.32$ (S3a, major) and $R_f = 0.27$ (S3b, minor). Column chromatography [silica, ethyl acetate/hexanes (1:3)] afforded each component as a light yellow oil (S3a, 72 mg, 22%; S3b, 6.1 mg, 2%); the two were found to be isomers.

Data for **S3a**: ¹H NMR δ 1.12 (s, 3H), 1.17 (s, 3H), 1.72, 2.22 (AB, ²*J* = 18.4 Hz, 2H), 1.98 (s, 3H), 3.72 (s, 3H), 4.67 (d, *J* = 12.2 Hz, 1H), 6.04–6.07 (m, 1H), 6.10–6.12 (m, 1H), 6.21 (d, *J* = 12.2 Hz, 1H), 6.59–6.62 (m, 1H), 6.79 (d, *J* = 8.8 Hz, 2H), 7.29 (d, *J* = 8.8 Hz, 2H), 8.31–8.39 (br, 1H); ¹³C NMR δ 23.0, 26.2, 31.8 36.6, 44.9, 51.7, 55.4, 93.6, 107.7, 109.0, 114.5, 118.5, 128.4, 129.5, 132.0, 158.9, 209.2; FAB-MS obsd 344.1732, calcd 344.1736 (C₁₉H₂₄N₂O₄).

Data for **S3b**: ¹H NMR δ 1.03 (s, 3H), 1.05 (s, 3H), 1.94 (s, 3H), 2.05, 2.31 (AB, ²*J* = 18.8 Hz, 2H), 3.77 (s, 3H), 4.61 (d, *J* = 10.2 Hz, 1H), 5.93 (d, *J* = 10.2 Hz, 1H), 6.07–6.11 (m, 2H), 6.64-6.66 (m, 1H), 6.83 (d, *J* = 8.8 Hz, 2H), 7.21 (d, *J* = 8.8 Hz, 2H), 8.28–8.40 (br, 1H); ¹³C NMR δ 24.3, 25.8, 31.4, 37.0, 44.9, 52.6, 55.5, 95.8, 107.3, 108.8, 114.6, 117.9, 129.4, 129.9, 131.3, 159.1, 207.1; FAB-MS obsd 345.1802, calcd 345.1814 [(M + H)⁺, M = C₁₉H₂₄N₂O₄].

5-(4-Methoxyphenyl)-2,3,4,5-tetrahydro-1,3,3-trimethyldipyrrin N^{10} -oxide (S4a-O). Following a literature procedure,³² a vigorously stirred solution of S3a (64 mg, 0.19 mmol) in acetic acid (0.93 mL) and ethanol (0.93 mL) at 0 °C was treated portionwise with zinc dust (300 mg, 4.7 mmol) for 5 min. The reaction mixture was stirred at 0 °C for 15 min and then filtered through Celite. The filtrate was concentrated under high vacuum. The resulting oil was chromatographed (silica, ethyl acetate) to afford a pale yellow oil (S4a, 9 mg, 16%) and the title compound as a yellow oil (30 mg, 52%).

Data for **S4a-O**: ¹H NMR δ 1.16 (s, 3H), 1.36 (s, 3H), 1.70–1.77 (m, 1H), 1.91 (s, 3H), 1.97–2.04 (m, 1H), 4.14–4.16 (m, 1H), 4.47–4.50 (m, 1H), 5.88–5.91 (m, 1H), 6.02–6.05 (m, 1H), 6.72–6.75 (m, 1H), 6.75 (d, *J* = 8.8 Hz, 2H), 7.29 (d, *J* = 8.8 Hz, 2H), 12.11–12.20 (br, 1H); ¹³C NMR δ 13.4, 23.0, 31.5, 37.6, 44.9, 46.4, 55.4, 85.6, 105.2, 107.6, 114.0, 117.4, 130.0, 131.8, 134.1, 149.7, 158.7; FAB-MS obsd 313.1916, calcd 313.1916 [(M + H)⁺, M = C₁₉H₂₄N₂O₂].

Data for **S4a**: ¹H NMR δ 0.97 (s, 3H), 1.05 (s, 3H), 1.60–1.72 (m, 1H), 2.01–2.02 (m, 3H), 2.06–2.08 (m, 1H), 3.74 (s, 3H), 4.17–4.21 (m, 1H), 4.20–4.23 (m, 1H), 5.93–5.96 (m, 1H), 6.05–6.08 (m, 1H), 6.65–6.68 (m, 1H), 6.73 (d, *J* = 8.6 Hz, 2H), 7.21 (d, *J* = 8.6 Hz, 2H), 9.59–9.66 (br, 1H); FAB-MS obsd 297.1971, calcd 297.1967 [(M + H)⁺, M = C₁₉H₂₄N₂O].