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ELECTRONIC SUPPORTING INFORMATION

Section SI 01

Singlet oxygen detection. The analysis and quantification of ‘0, by recording its phosphorescence
emission signal® upon continuous monochromatic excitation of the photosensitizer provided the

means for determining quantum yields of 'O, production (®,) and rate constants of 'O, total
quenching by the PS.>” Under continuous irradiation of a PS, the quantum vyield of 'O, emission is

given by:
P. CS
= =—t SI 01
P, P

where C is a proportionality factor depending on the detection system and on specific parameters of
the medium (refractive index, NIR absorbance), S is the o, signal intensity, Py and P, are the incident
photon flux and the photon flux absorbed by the PS (P, = Pyar), P is the photon flux emitted by
singlet oxygen. « is the absorption factor with A, absorbance of the PS at the wavelength of
excitation, given by:

a=1-10" SI102
®. may be also expressed as:
Dp = Dy ke TA SI1 03

where

ko (s is the rate constant of ‘0, emission (negligible relative to the rate constant of quenching by
the solvent in most solvents, ky >> k.),*” and T (s) is the singlet oxygen lifetime: in the absence of a
quencher, 1:2: 1/ kq. In ACN and CD;0D, the two solvents used in this work, Ty, is equal to 71% and

270%° us, respectively. In the presence of a quencher (Q), T4 is given by:

7, = %kd e[Q)) 5104

where k? (M™*s™) is the rate constant of total quenching by Q, given by the sum of the rate constants

of physical quenching (kg) and chemical reaction (k).
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If the 'O, phosphorescence signals are recorded in the same solvent for the PS investigated and for a
standard sensitizer of know @, (and negligible *0, quenching: k¢ [Q] << kg), the following relation is
obtained by combining equations Sl 01, 03 and 04 (with Q = PS):

SRS of

= —A (1+ 7k 3 [PS] S 05
SESPaR (DZS( AT )

It should be noted that ¢ and &® (eq. SI 01) should not differ significantly, otherwise the geometry
of the system and thus the factor C would be modified and the above relation (SI 05) would not hold.

The plot of (S8/S5%)(P2S/PR) = £([PS]) should be linear and values of k{* and ®}/®}° may be obtained
from the slope and the intercept of this plot if the value of 1, in the solvent used is known.

In the cases where ki°[PS] « kg4 (negligible 'O, quenching by PS in the range of concentrations used),
the quantum yield of singlet oxygen production of a PS in a given medium does not depend on the PS
concentration (eq. SI 06).

SPSPR

QL =0f =22 S1 06
Se Pa

The apparent values of CDXS (Cbzgpp) at given PS concentrations may be calculated from the ratio of

the 'O, signal intensities (eq. SI 07).

OPS = PR SZSPaR _ d)ZS

= SI 07
AP TAGRPPS 14 7, kPS[PS]

In the cases where kFS[PS] « k, (negligible 'O, quenching by the PS in the range of concentrations

used), the ratio S}/SFS does not depend on the PS concentration and the quantum yield of ‘0,

S

production by the PS is equal to CDZapp.

The '0, emission signals were measured at various absorbances Perinaphthenone (PN) that has high
®, value in a large variety of solvents, was used as standard sensitizer and was excited at
367nm.">1? RB was selected as a reference in CD;0D (P = 0.76, Aoy = 547 nm)'®® in order to

minimize errors due to the irradiation of R and PS at different wavelengths.

The equipment used to monitor the ‘0, luminescence at 1270 nm upon continuous monochromatic
excitation of the PS has been custom-built and described elsewhere.” A cooled (-80 °C) NIR
photomultiplier (Hamamatsu R5509 PMT) was used as a ‘O, phosphorescence detector. The
solutions containing the different PSs were irradiated at 367 nm or 547 nm with a Xe-Hg arc lamp (1
kW) through a water filter, focusing optics and a monochromator. Singlet oxygen luminescence
signals were registered during a minimum of three minutes. The experimental results were the
average of two to three independent series of measurements. Absorption spectra were recorded
before and after irradiation on UV-Vis spectrophotometer (Hewlett-Packard 8453) to detect any
sensitizer bleaching during irradiation. The incident radiant powers (W / mW) at the wavelengths of
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irradiation were measured using a thermopile (Laser Instrumentation, model 154): values of approx.
3.5 mW and 1.8 mW were measured at 367 nm and 547 nm, respectively.

Quantum yields of singlet oxygen production of MV and NMB* in ACN were also determined by ‘0,
trapping by a selective probe for singlet oxygen. The relationship between the ®, of a given PS and

the rate of probe consumption is given by the following equation:

_dQ]_p s k[Q]

dt 0 K, + KPS|+ k°[Q] >l 08

with all the parameters described above. Rubrene selectively reacts with singlet oxygen and was

1719 The experimental set-up and the kinetics data concerning rubrene

used as a chemical probe.
photosensitized oxygenation by singlet oxygen addition have already been described.? kfs data
were obtained by luminescence experiments and applied to the calculations for indirect 'O,

detection.

3 mL solutions (fluorescence quartz cells) containing both the PS and rubrene, magnetically stirred at
25 °C, were irradiated with a 200W Xe-Hg Lamp; a Cornerston 260 motorized monochromator was
used to select the irradiation wavelength (585 nm for MV and 620 for NMB®*). A Perkin Elmer double
beam, double monochromator Lambda850 UV-Vis spectrometer was used for the analysis. The
quartz cells were positioned directly on the support of the spectrophotometer: the decrease of
rubrene absorbance was followed while irradiation took place (light source perpendicular to the
analytical beam). The values of the photon flux absorbed by the PS (P, Einsteins L™ s™) were
calculated using eq. 8:** the absorbance of the PSs (A) was measured spectrophotometrically, P, with
an International Light ILT900 spectroradiometer.

P =D P, (1-107) $109
A A
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Figure SI 1 Normalized absorption spectra of MV in various solvents: n-heptane (black solid line), dioxane (grey dotted line),
acetonitrile (black dashed line), methanol (grey solid line) and water (black dashehd line). Air-equilibrated solutions at room
temperature.
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Figure SI 2 Fluorescence emission spectra (Ae = 550 nm) of MB* (a), RB (b), NMB" (c) and MV (d) in air-equilibrated MeOH
(red dashed lines) and ACN (black solid lines).
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Figure SI 3 Decays of the transient absorption of MB* in ACN (a), NMB" in MeOH (b), MV in ACN (c) and MeOH (d) in Ar-
saturated (red), air-equilibrated (blue) and oxygen-saturated (green) solutions.
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Figure SI 4 Time-evolution ((50 ns, diamonds, 250 ns, squares, and 1 s, triangles, after the laser pulse end) of the transient
spectrum obtained by laser flash photolysis of NMB" (1.5 x 10° M) in air-equilibrated MeOH (a) and Ar-saturated MeOH (b,
1 us after the laser pulse).
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