Electronic Supplementary Information

Photooxygenation Mechanisms in Naproxen-Amino Acid

Linked Systems

Ignacio Vayá,^a Inmaculada Andreu,^b M. Consuelo Jiménez^{a,*} and Miguel A. Miranda^{a,*}

^a Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat

Politécnica de València, Camino de Vera s/n, 46022 Valencia, Spain

^b Unidad Mixta de Investigación IIS La Fe-UPV, Hospital La Fe, Avda.

Campanar 21, 46009 Valencia, Spain

S1. This page.

S2. Figure S1. X-ray structures of (*R*,*S*)-2, (*R*,*S*)-3 and (*R*,*S*)-4.

S3. Figure S2. Photodegradation of (*S*)-1 under N_2 (solid circles), air (half solid circles) and O_2 (open circles).

S4. Figure S3. Top: photoreactivity of (*R*)-1 (black), (*R*,*S*)-2 (blue), (*R*,*S*)-3 (green) and (*R*,*S*)-4 (red). Middle: oxygen-mediated photoreactivity of the same compounds (values under air – values under nitrogen). Bottom: photoreactivity of (*R*,*S*)-2 under different conditions. Codes: solid circles (N₂), half solid circles (air) and open circles (O₂).

S5. Figure S4. Photodegradation of (S,S)-4 under N₂ (solid circles), air (half solid circles) and O₂ (open circles).

S6. Figure S5. Absorption spectra of A) (*S*)-NPX (violet), (*S*)-GlyMe esther (dash black) and (*S*)-1 (solid black); B) (*S*)-NPX (violet), (*S*)-HisMe esther (dash blue) and (*S*,*S*)-2 (solid blue); C) (*S*)-NPX (violet), (*S*)-TrpMe esther (dash green) and (*S*,*S*)-3 (solid green); D) (*S*)-NPX (violet), (*S*)-TyrMe esther (dash red) and (*S*,*S*)-4 (solid green). The intensity of NPX absorption in A and B has been slightly reduced in order to be distinguishable.

S7. Figure S6. Fluorescence spectra of (*S*)-1 (black), (*S*,*S*)-2 (blue line) and (*R*,*S*)-2 (blue dot) in deaerated MeCN solutions ($\lambda_{exc} = 266$ nm).

S8. Figure S7. A) Fluorescence spectra and B) triplet excited state decays of (*S*)-1 (black), (*S*,*S*)-4 (red line) and (*R*,*S*)-4 (red dot) in deaerated MeCN solutions ($\lambda_{exc} = 266$ nm).

Figure S1. X-ray structures of (*R*,*S*)-**2**, (*R*,*S*)-**3** and (*R*,*S*)-**4**.

Figure S2. Photodegradation of (S)-1 under N_2 (solid circles), air (half solid circles) and O_2 (open circles).

Figure S3. Top: photoreactivity of (*R*)-1 (black), (*R*,*S*)-2 (blue), (*R*,*S*)-3 (green) and (*R*,*S*)-4 (red). Middle: oxygen-mediated photoreactivity of the same compounds (values under air minus values under nitrogen). Bottom: photoreactivity of (*R*,*S*)-2 under different conditions. Codes: solid circles (N₂), half solid circles (air) and open circles (O₂).

Figure S4. Photodegradation of (S,S)-4 under N₂ (solid circles), air (half solid circles) and O₂ (open circles).

Figure S5. Absorption spectra of A) (*S*)-NPX (violet), (*S*)-GlyMe esther (dash black) and (*S*)-1 (solid black); B) (*S*)-NPX (violet), (*S*)-HisMe esther (dash blue) and (*S*,*S*)-2 (solid blue); C) (*S*)-NPX (violet), (*S*)-TrpMe esther (dash green) and (*S*,*S*)-3 (solid green); D) (*S*)-NPX (violet), (*S*)-TyrMe esther (dash red) and (*S*,*S*)-4 (solid green). The intensity of NPX absorption in A and B has been slightly reduced in order to be distinguishable.

Figure S6. Fluorescence spectra of (*S*)-1 (black), (*S*,*S*)-2 (blue line) and (*R*,*S*)-2 (blue dot) in deaerated MeCN solutions ($\lambda_{exc} = 266$ nm).

Figure S7. A) Fluorescence spectra and B) triplet excited state decays of (*S*)-1 (black), (*S*,*S*)-4 (red line) and (*R*,*S*)-4 (red dot) in deaerated MeCN solutions ($\lambda_{exc} = 266$ nm).