Design and Synthesis of Novel Anthracene Derivatives as n-type Emitters for Electroluminescent Devices: A Combined Experimental and DFT Study

G. Mallesham,^{a,b} S. Balaiah,^b M. Ananth Reddy,^{a,b} B. Sridhar,^{*c} Punita Singh,^d Ritu Srivastava,^{*d} K. Bhanuprakash^{*b,e} and V. Jayathirtha Rao^{*a,e}

 ^a Crop Protection Chemicals Division, ^b Inorganic and Physical Chemistry Division,
^c Laboratory of X-Ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500007, India
^d Organic Electronics, National Physical Laboratory, New Delhi, India
^e National Institute for Solar Energy, New Delhi, India

Supplementary information

Content

HOMO, LUMO energy levels calculated with B3LYP/6-311G(d,p)	ii
ORTEP diagrams for 4b and 8c	iii
DSC thermo grams	iv
TGA plots	v-vii
UV-Vis and PL spectra in different solvents	viii-xiii
OLED device graphs	xiv-xix
Crystal data and structure refinement details for 4b and 8c	хх
UV-Vis absorption data (λ_{abs}) of 4a–4c and 8a-8c in different solvents	. xxi
¹ H and ¹³ C NMR spectra for 4a-4c and 8a-8c	xxii-xxvii

Fig. 1 Frontier molecular orbitals of **4b**, **4c**, **8b** and **8c** obtained at B3LYP/6- 311G(d,p) level of theory

b)

Fig. 2 ORTEP diagrams of 4b (a) and 8c (b).

Fig. 3 DSC traces of 4b-4c (a) and 8b-8c (b).

Fig. 4 TGA thermogram of 4a recorded at a heating rate of 10 °C min⁻¹.

Fig. 5 TGA thermogram of **4b** recorded at a heating rate of 10 °C min⁻¹.

Fig. 6 TGA thermogram of 4c recorded at a heating rate of 10 °C min⁻¹.

Fig. 7 TGA thermogram of 8a recorded at a heating rate of 10 °C min⁻¹.

Fig. 8 TGA thermogram of 8b recorded at a heating rate of 10 °C min⁻¹.

Fig. 9 TGA thermogram of 8c recorded at a heating rate of 10 °C min⁻¹.

Fig 10: UV-Vis absorption spectra of compounds **4a** and **8a** obtained from experiment and B3LYP/6-311G(d,p) level in CHCl₃ solvent.

Fig. 11 UV-Vis absorption spectra of 4a in different solvents (1 x 10^{-5} M) carried out at ambient temperature.

Fig. 12 UV-Vis absorption spectra of 4b in different solvents (1 x 10^{-5} M) carried out at ambient temperature.

Fig. 13 Normalized emission spectra of 4b in different solvents $(1 \times 10^{-5} \text{ M})$ and in solid state carried out at ambient temperature.

Fig. 14 UV-Vis absorption spectra of 4c in different solvents (1 x 10^{-5} M) carried out at ambient temperature.

Fig. 15 Normalized emission spectra of 4c in different solvents (1 x 10^{-5} M) and in solid state carried out at ambient temperature.

Fig. 16 UV-Vis absorption spectra of 8a in different solvents (1 x 10^{-5} M) carried out at ambient temperature.

Fig. 17 UV-Vis absorption spectra of **8b** in different solvents $(1 \times 10^{-5} \text{ M})$ carried out at ambient temperature.

Fig. 18 Normalized emission spectra of 8b in different solvents $(1 \times 10^{-5} \text{ M})$ and in solid state carried out at ambient temperature.

Fig. 19 UV-Vis absorption spectra of 8c in different solvents (1 x 10^{-5} M) carried out at ambient temperature.

Fig. 20 Normalized emission spectra of 8c in different solvents $(1 \times 10^{-5} \text{ M})$ and in solid state carried out at ambient temperature.

c)

Fig. 21 The characteristic EL performance data for **4b** (a), **4c** (b), **8b** (c) and **8c** (d) at 10, 12, 14V.

a)

Fig. 22 Current density and luminance curve for 4b (a), 4c (b), 8b (c) and 8c (d)

c)

Fig. 23 Current and power efficiency curve for 4b (a), 4c (b), 8b (c) and 8c (d)

	4b	8c	
Empirical formula	C ₃₂ H ₂₆ N ₂ O	C ₃₁ H ₂₄ N ₂ O ₄	
Formula weight	454.55	488.52	
Temperature	294(2) K	294(2) K	
Wavelength	0.71073 Å	0.71073 Å	
Crystal system	Monoclinic	Monoclinic	
Space group	$P2_{1}/c$	$P2_{1}/c$	
Unit cell dimensions	a = 20.2645(11) Å	<i>a</i> = 19.3466(14) Å	
	$\alpha = 90^{\circ}$.	$\alpha = 90^{\circ}$	
	b = 12.2263(6) Å	b = 16.8505(12) Å	
	$\beta = 94.5970(10)^{\circ}$	$\beta = 100.6960(10)^{\circ}$	
	c = 10.0739(5) Å	c = 7.7163(6) Å,	
	$\gamma = 90^{\circ}$.	$\gamma = 90^{\circ}$	
Volume	2487.9(2) Å ³	2471.8(3) Å ³	
Ζ	4	4	
Density (calculated)	1.214 Mg m-3	1.313 Mg m-3	
Absorption coefficient	0.073 mm ⁻¹	0.087 mm ⁻¹	
F(000)	960	1024	
Crystal size	0.21 x 0.12 x 0.11 mm ³	$0.19 \ge 0.17 \ge 0.09 \text{ mm}^3$	
θ range for data collection	1.01 to 25.00°.	1.61 to 25.00°.	
Index ranges	$-24 \le h \le 24,$	$-22 \le h \le 22$,	
	$-14 \le k \le 14,$	$-20 \le k \le 20,$	
	-11 ≤ <i>l</i> ≤ 11	$-9 \le l \le 9$	
Reflections collected	23497	23465	
Independent reflections	$4370 [R_{int} = 0.0329]$	4338 $[R_{int} = 0.0301]$	
Completeness to $\theta = 25.00^{\circ}$	100.0 %	100.0 %	
Refinement method	Full-matrix least-squares on	Full-matrix least-squares on	
	F_2	F_2	
Data / restraints / parameters	4370 / 0 / 319	4338 / 0 / 337	
Goodness-of-fit on F2	1.059	1.226	
Final R indices [I >2 σ (I)]	R1 = 0.0602, wR2 = 0.1613	R1 = 0.0580, wR2 = 0.1236	

Table 1. Crystal data and structure refinement details for 4b and 8c.

R indices (all data)	R1 = 0.0792, $wR2 = 0.1795$	R1 = 0.0660, wR2 = 0.1277
Largest diff. peak and hole	0.374 and -0.139 e.Å-3	0.184 and -0.147 e.Å-3

Compound ^a	Toluene (nm) (ε) ^b	EtOAc (nm) (ε) ^b	CH₃CN (nm) (ε) ^b	DMF (nm) (ε) ^b
	()	()	. , . ,	
	294(68800)	288(54000)	288/53900)	292(54100)
10	254(00000),	200(0+000), 240(10100)	249(16500),	252(07100),
4a	350(22600),	340(10100),	346(10500),	350(17600),
	3683(2700),	365(27300),	366(24000),	368(25600),
	387(29900)	385(25100)	385(21900)	387(23300)
46	005/45700)	202/10000	200/40200	000/55500
40	295(45700),	292(18900),	289(49200),	293(55500),
	350(15600),	347(24800),	348(14500),	350(17700),
	368(22700),	365(27400),	366(21100),	368(25500),
	387(20800)	385(23800)	385(19300)	387(23200)
	302(64600),	299(57600),	298(59700),	301(43700),
4c	350(24100),	348(18900),	348(18800),	350(14500),
	368(32800),	365(25800),	366(25600),	368(12000),
	387(29600)	385(23200)	385(23100)	387(17800)
	292(68900),	288(63700),	287(61300),	290(60500),
8a	349(19700),	347(16400),	347(14900),	349(15300),
	367(28900),	365(25000),	365(22700),	367(23500),
	387(26800)	384(23200)	384(20900)	387(21600)
	. ,	, , , , , , , , , , , , , , , , , , ,	. ,	· · · · ·
	285(194500),	280(17600),	287(61700),	290(53900),
8b	348(30300),	347(25000),	347(14400),	349(13100),
	367(30700),	365(34000),	365(21900),	367(20200),
	387(26500)	384(30900)	384(20100)	387(18600)
	· · · ·	, ,	. ,	· /
	303(73200),	300(50900),	299(58400),	301(42200),
8c	348(19500).	347(15200).	347(16600).	349(13000).
	367(23000)	365(21500)	365(23700)	367(18000)
	387(20600)	384(19800)	384(21700)	387(16400)
	201 (20000)	33 (10000)	221(21100)	337 (10100)

^a All the compounds measured in 1×10^{-5} M concentration, at room temperature,

^b Molar extinction coefficient (ϵ , mol⁻¹ cm⁻¹).

¹H and ¹³C-NMR spectra for **4a-4c** and **8a-8c**.

Fig. 24 ¹H NMR spectrum of compound 4a

Fig. 25 ¹³C NMR spectrum of compound 4a

Fig. 26 ¹H NMR spectrum of compound 4b

Fig. 27 ¹³C NMR spectrum of compound 4b

Fig. 28 ¹H NMR spectrum of compound 4c

Fig. 29¹³C NMR spectrum of compound 4c

Fig. 30 ¹H NMR spectrum of compound 8a

Fig. 31 ¹³C NMR spectrum of compound 8a

Fig. 32 ¹H NMR spectrum of compound 8b

Fig. 33 ¹³C NMR spectrum of compound 8b

Fig. 34 ¹H NMR spectrum of compound 8c

Fig. 35 ¹³C NMR spectrum of compound 8c