Supporting Information:

Conjugated Polyelectrolytes with Guanidinium Side Groups. Synthesis, Photophysics and Pyrophosphate sensing

Xuzhi Zhu, Jie Yang and Kirk S. Schanze*

Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200

* Corresponding author: e-mail: kschanze@chem.ufl.edu,

TEL: 352-392-9133, FAX: 352-392-2395.

Scheme S1. Synthesis of Monomer

Figure S1. ¹H NMR spectrum (500 MHz, CDCl₃) of **P1-Boc**.

Figure S2. ¹H NMR spectrum (500 MHz, CDCl₃) of **P2-Boc**.

Figure S3. Absorption (a) and Fluorescence (b) spectra of P1 in water at various pH.

Figure S4. Emission spectra for **P1** (2 μ M) at various concentrations of the quencher AQS(A), K₄Fe(CN)₆ (B), PPi (C) and Pi(D).

Figure S5. Fluorescence spectra of **P2** in MeOH upon the addition of different quenchers. (A) AQS; (B) K₄Fe(CN)₆; (C) PPi; (D) Pi. [**P2**] = 2 μ M.

Figure S6. Stern-Volmer Plots of P2 (2 μM) with various concentration of the quenchers in MeOH. AQS(■); K₄Fe(CN)₆(●); PPi (▲); Pi (▼).

Polymer	Quencher	$K_{\rm sv}$ (M ⁻¹)	[Q ₉₀] (µM)		
PA	PPi	4.6 x 10 ⁶	1.2		
	K ₄ Fe(CN) ₆	$1.5 \ge 10^6$	1.1		
P2	AQS	8.0 x 10 ⁶	0.4		
	Pi	1.3 x 10 ⁶	4.5		

	MeOH					H_2O					
	RA(%)										
P1	$\tau_{i}(ns)$	450 nm	500 nm	550 nm	600 nm	$\tau_i(ns)$	450 nm	500 nm	550 nm	600 nm	
	$\tau_1\!=\!0.15$	73	72	75	58	$\tau_1\!=\!0.17$	88	82	76	75	
	$\tau_2\!=\!0.46$	27	27	23	36	$\tau_2\!=\!0.57$	12	17	22	22	
	$\tau_3 = 1.26$	0	1	2	6	$\tau_3 = 1.98$	0	1	3	3	
	χ^2	0.99	0.99	1.00	1.02	χ^2	1.09	0.99	1.01	0.99	
P2	$\tau_1\!=\!0.17$	82	74	68	67	$\tau_1\!=\!0.13$	95	93	89	85	
	$\tau_2\!=\!0.54$	18	26	31	31	$\tau_2\!=\!0.61$	5	6	10	13	
	$\tau_3 = 1.73$	0	0	1	2	$\tau_3 = 2.12$	0	1	1	2	
	χ^2	1.01	1.01	0.98	0.97	χ^2	1.00	0.97	0.97	0.93	

Table S2. Fluorescence lifeteim of P1 and P2 in MeOH and Water

Figure S7. Fluorescence spectra of P1/triton complex and emission change upon the addition of Pi from 0 to a30 μ M, [P1] = 3 μ M, [Triton X-100] = 200 μ M. Inset is the Stern-Volmer plots.

Figure S8. Fluorescence intensity change of **P1**/triton complex and emission change upon the addition of PPi from 0 to 4 μ M, [**P1**] = 3 μ M, [Triton X-100] = 200 μ M, Em = 444 nm. The analytical detection limit (D.L.) was calculated to be 176 nM using the equation D.L. = 3 δ_{bk} /m, where δ_{bk} is the standard deviation of the blank and m is the slope of the calibration plot.¹

1. Valcarcel, M. Principles of Analytical Chemistry: A textbook; Springer-Verlag: New York, 2000.