Supporting Information

Highly Photostable "Super"-Photoacids for Ultrasensitive Fluorescence Spectroscopy

Björn Finkler^[a], Christian Spies^[a], Michael Vester^[a], Frederick Walte^[a], Kathrin Omlor^[a], Iris Riemann^[b], Manuel Zimmer^[c], Frank Stracke^[b], Markus Gerhards^[c], Gregor Jung^[a]

^[a] Biophysical Chemistry, Saarland University, Campus B2 2, 66123 Saarbrücken, Germany.

^[b] Fraunhofer-IBMT, Ensheimer Straße 48, 66386 St. Ingbert, Germany.

^[c] Technische Universität Kaiserslautern & Research Center Optimas, Fachbereich Chemie, Erwin-Schrödinger-Str. 67663 Kaiserslautern, Germany.

Email corresponding author: g.jung@mx.uni-saarland.de

Determination of pK_a values via fluorescence correlation spectroscopy (FCS)

For determination of the pK_a values of the weakly water soluble photoacids, we followed the experimental procedure of Widegren *et al.* ^[S1]

The actual system consists of an acid, the corresponding base and buffer HB⁺/B for stabilizing the equilibrium. A 20 mM HPCE-buffer (citric acid / sodium citrate, Fluka) was employed for the pH values 4 and 4.5. Protonation and deprotonation is widely mediated by HB⁺ and B with the bimolecular rate constants k_{prot}^{bi} and k_{deprot}^{bi} (Equation S1), which are experimentally determined to lie in the range of ~ $10^8 \text{ M}^{-1}\text{s}^{-1}$. At a total buffer concentration of 20 mM, where [HB⁺] \approx [B], direct, diffusion-controlled protonation by H⁺ and deprotonation can be neglected at pH-values > 4.^[S1]

$$ROH + B \xrightarrow{k_{deprot}^{bi}} RO^{-} + HB^{+}$$
(S1)

The kinetic description for the equilibrium leads to:

$$\frac{d[\text{RO}^-]}{dt} = -k_{prot}^{bi}[\text{RO}^-][\text{HB}^+] + k_{deprot}^{bi}[\text{ROH}][\text{B}] = 0$$
(S2)

The effective rates are defined as $k_{prot}^{eff} = k_{prot}^{bi} \cdot [HB^+]$ and $k_{deprot}^{eff} = k_{deprot}^{bi} \cdot [B]$, so equation S2 can be converted into:

$$\frac{[\text{ROH}]}{[\text{RO}^-]} = \frac{k_{prot}^{eff}}{k_{deprot}^{eff}}$$
(S3)

$$K_a^{-1} = \frac{[\text{ROH}]}{[\text{H}^+][\text{RO}^-]}$$
(S4)

Combination of (S3) and (S4) leads to a relation for the pK_a :

$$pK_a = pH + log \frac{k_{prot}^{eff}}{k_{deprot}^{eff}}$$
(S5)

The rate constants k_{prot}^{eff} and k_{deprot}^{eff} are directly accessible in a FCS-experiment by photoexcitation of RO⁻ and detection of its fluorescence (Figure S1).

Figure S1: Schematic representation for pK_a -determination: excitation of RO⁻ (**3b**) was performed at $\lambda_{exc} = 546$ nm ($\lambda_{abs, max} = 515$ nm at pH 4; $\lambda_{em, max} = 557$ nm at pH 4), fluorescence was detected at $\lambda_{det} = 555-625$ nm. The dark state ROH is populated with the rate constant k_{prot}^{eff} , whereas k_{deprot}^{eff} describes the depopulation the dark state.

Fitting the obtained correlation functions $G(\tau)$ according to equation S6 (Figure S2) gives the rates k_{prot}^{eff} , k_{deprot}^{eff} and consequently the pK_a value depicted in Table 2. The outcome of this approach was verified with **3f**.

$$G(\tau) = \frac{1}{\langle N \rangle} \frac{1}{1 + \frac{\tau}{\tau_D}} \left(1 + \frac{\mathbf{k}_{prot}^{eff}}{\mathbf{k}_{deprot}^{eff}} \exp\left(-(\mathbf{k}_{prot}^{eff} + \mathbf{k}_{deprot}^{eff})\tau\right) \right)$$
(S6)

Figure S2: Normalized correlation function of **3b**. Excitation was performed at $\lambda = 546$ nm with a laser intensity of 168 kW cm⁻¹ in a 20 mM citrate-buffer at pH 4.5. Fluorescence was detected at $\lambda_{det} = 555-625$ nm. A p K_a of 4.4 is calculated as a mean value of two measurements.

Characterisation of the described compounds with NMR- and mass spectroscopy:

Scheme S1: Synthesis of HPTS-derivatives 3a-f.

Figure S3: ¹H-NMR spectrum of **1**.

Figure S4: ¹H-NMR spectrum of **1** (zoomed).

Figure S6: ¹³C-NMR spectrum of **1** (zoomed).

Figure S7: mass spectrum of 1.

Compound 2:

Figure S8: ¹H-NMR spectrum of **2**.

Figure S9: ¹H-NMR spectrum of **2** (zoomed).

Figure S10: ¹H-NMR spectrum of **3a**.

Figure S11: ¹H-NMR spectrum of **3a** (zoomed).

Figure S12: ¹³C-NMR spectrum of **3a**.

Figure S13: ¹³C-NMR spectrum of **3a** (zoomed).

Figure S14: mass spectrum of **3a**.

Compound 3b:

Figure S15: ¹H-NMR spectrum of **3b**.

Figure S16: ¹H-NMR spectrum of **3b** (zoomed).

Figure S17: ¹³C-NMR spectrum of **3b**.

Figure S18: ¹³C-NMR spectrum of **3b** (zoomed).

Figure S19: mass spectrum of **3b**.

Compound 3c:

Figure S20: ¹H-NMR spectrum of **3c**.

Figure S21: ¹H-NMR spectrum of **3c** (zoomed).

Figure S22: ¹³C-NMR spectrum of **3c**.

Figure 23: ¹³C-NMR spectrum of **3c** (zoomed).

Figure S24: mass spectrum of 3d.

Figure S25: ¹H-NMR spectrum of **3d**.

Figure S26: ¹H-NMR spectrum of **3d** (zoomed).

Figure S27: ¹³C-NMR spectrum of **3d**.

Figure S28: ¹³C-NMR spectrum of **3d** (zoomed).

Figure S29: mass spectrum of 3d.

Compound 3e:

Figure S30: ¹H-NMR spectrum of **3e**.

Figure S31: ¹H-NMR spectrum of **3e** (zoomed).

Figure S32: ¹³C-NMR spectrum of **3e**.

Figure S33: ¹³C-NMR spectrum of **3e** (zoomed).

Figure S34: mass spectrum of 3e.

Figure S35: ¹H-NMR spectrum of **3f**.

Figure S36: ¹H-NMR spectrum of **3f** (zoomed).

Figure S37: ¹³C-NMR spectrum of **3f**.

Figure S38: mass spectrum of 3f.

Electronic Supplementary Material (ESI) for Photochemical & Photobiological Science This journal is O The Royal Society of Chemistry and Owner Societies 2014

References:

[S1] J. Widengren, B. Terry, R. Rigler, Chem. Phys. 1999, 249, 259-271.