Supporting information for:

Photochemical ligand ejection from non-sterically promoted Ru(II)bis(diimine) 4,4'-bi-1,2,3-triazolyl complexes

Christine E. Welby, Georgina K. Armitage Harry Bartley, Alessandro Sinopoli, Baljinder S. Uppal and Paul I. P. Elliott*

Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.

Experimental details.

The complex $[Ru(bpy)_2(btz)][PF_6]_2$ (1a) was prepared as previously described and precursors $[RuCl_2(p-cyemene)]_2$ and $[Ru(N^N)_2Cl_2]$ by literature procedures.¹⁻³ Other reagents and solvent were purchased from Aldrich Chemicals, Fisher Scientific or Acros Organics and used as supplied. NMR characterisation data were recorded on Bruker 500 Avance or 400 Ascend spectrometers. UV-visible absorption data were recorded on a Agilent Technologies Cary 60 spectrometer whilst mass spectrometry data were collected on a Bruker Micro-Q-TOF instrument.

Synthesis of [RuCl(p-cymene)(dmbpy)][PF₆].

[RuCl₂(*p*-cymene)]₂ (100.2 mg, 0.16 mmol) and 4,4'-dimethyl-2,2'-bipyridyl (120.5 mg, 0.65 mmol, 4 eq.) were suspended in 10 mL MeOH and the reaction mixture vigorously stirred at room temperature for 3 hours. After this time, an excess of NH₄PF₆ was added and the volume of the solution reduced by half *in vacuo*. An orange precipitate was observed to form – this was filtered and washed with 10 mL Et₂O. Yield = 153.5 mg (78.2 %) ¹H NMR (500 MHz) CD₃CN $\delta_{\rm H}$ 1.02 (s, 3H, CH(CH₃)), 1.04 (s, 3H, CH(CH₃)), 2.20 (s, 3H, *p*-cymene CH₃), 2.59 (s, 6H, dmbpy), 2.64 (sp, ³J_{HH} = 7.2 Hz, 1H, CH(CH₃)₂), 5.68 (d, ³J_{HH} = 6.2 Hz, 2H, *p*-cymene Ar-CH), 5.89 (d, ³J_{HH} = 6.2 Hz, 2H, *p*-cymene Ar-CH) 7.53 (d, ³J_{HH} = 5.9 Hz, 2H, dmbpy-H₅), 8.17 (s, 2H, dmbpy-H₃), 9.14 (d, ³J_{HH} = 6.0 Hz, 2H, dmbpy-H₆). ¹³C NMR (125.8 MHz) CD₃CN $\delta_{\rm C}$ 18.5 (CH₃, *p*-cymene Ar), 103.8 (*C*, *p*-cymene Ar-C(CH₃)), 105.0 (*C*, *p*-cymene Ar-CCH(CH₃)₂), 124.8 (CH, dmbpy-C₃), 128.9 (CH, dmbpy-C₅), 153.2 (*C*, 4-Dmbpy-C₄), 154.8 (*C*, dmbpy-C₂), 155.1 (CH, dmbpy-C₆). HRMS-ESI calculated for [RuCIN₂C₂₂H₂₆]⁺ m/z = 455.082252, found m/z = 455.082790.

Synthesis of [RuCl(*p*-cymene)(phen)][PF₆].

[RuCl₂(*p*-cymene)]₂ (74.9 mg, 0.12 mmol) and 1,10-phenanthroline (88.1 mg, 0.49 mmol, 4 eq.) were suspended in 7 mL MeOH and the reaction mixture vigorously stirred at room temperature for 3 hours. After this time, an excess of NH₄PF₆ was added and the volume of the solution reduced by half *in vacuo*. An orange precipitate was observed to form – this was filtered and washed with 10 mL Et₂O. Yield = 109.2 mg (74.9 %) ¹H NMR (500 MHz) CD₃CN $\delta_{\rm H}$ 1.01 (s, 3H, CH(CH₃)), 1.03 (s, 3H, CH(CH₃)), 2.19 (s, 3H, *p*-cymene CH₃), 2.71 (sp, ³J_{HH} = 7.0 Hz, 1H, CH(CH₃)₂), 5.86 (d, ³J_{HH} = 6.4 Hz, 2H, *p*-cymene Ar-CH), 6.05 (d, ³J_{HH} = 6.4 Hz, 2H, *p*-cymene Ar-CH), 8.06 (dd, ³J_{HH} = 5.3 Hz, 8.2 Hz, 2H, phen), 8.18 (s, 2H, phen), 8.78 (dd, ⁴J_{HH} = 0.9 Hz, ³J_{HH} = 8.3 Hz, 2H, phen), 9.69 (dd, ⁴J_{HH} = 1.0 Hz, ³J_{HH} = 5.3 Hz, 2H, phen). ¹³C NMR (125.8 MHz) CD₃CN $\delta_{\rm C}$ 18.4 (CH₃, *p*-cymene), 21.7 (CH₃, CH(CH₃)₂), 31.4 (CH, CH(CH₃)₂), 84.8 (CH, *p*-cymene Ar), 86.3 (CH, *p*-cymene Ar), 103.0 (*C*, *p*-cymene Ar-C(CH₃)), 106.0 (*C*, *p*-cymene Ar-CCH(CH₃)₂), 126.9 (CH, phen), 128.1 (CH, phen), 131.2 (*C*, phen), 139.4 (CH, phen), 146.3 (*C*, phen), 155.9 (CH, phen). HRMS-ESI calculated for [RuCIN₂C₂₂H₂₂]⁺ m/z = 451.050952, found m/z = 451.051132.

Synthesis of [Ru(dmbpy)₂(btz)][PF₆]₂ (1b).

 $[RuCl_2(dmbpy)_2]$ (30.9 mg, 57.2 µmol) and btz (20.9 mg, 66.7 µmol) were dissolved in 8 mL EtOH and solution degassed by bubbling with N₂. The dark purple reaction mixture was then heated at reflux for 4 hours. After cooling to room temperature, the solvent was evaporated and the orange residue purified by silica gel column chromatography using a 7:1:0.5 MeCN:H₂O:KNO₃(aq) solvent system. The bright orange band was collected and the solvent evaporated. The orange residue was redissolved in MeCN, filtered to remove KNO₃ and the solvent evaporated once more. The product was dissolved in 8mL EtOH and an excess of NH₄PF₆ was added which caused an orange precipitate to form. This was filtered and washed with small portions of H₂O and Et₂O and allowed to dry. Yield 40.8 mg (66.3 %)

¹H NMR (400 MHz) CD₃CN $\delta_{\rm H}$ 2.54 (s, 6H, CH₃ dmbpy), 2.57 (s, 6H, CH₃ dmbpy), 5.51 (s, 4H, CH₂ of btz), 7.12 – 7.14 (m, 4H, *Ph*), 7.20 (dd, ⁴J_{HH} = 1.4 Hz, ³J_{HH} = 5.8 Hz, 2H, dmbpy-H₅), 7.26 (dd, ⁴J_{HH} = 1.2 Hz, ³J_{HH} = 5.8 Hz, 2H, dmbpy-H₅), 7.34 – 7.41 (m, 6H, *Ph*), 7.67 (d, ³J_{HH} = 5.8 Hz, 2H, dmbpy-H₆), 7.69 (d, ³J_{HH} = 5.8 Hz, 2H, dmbpy-H₆'), 8.30 (br s, 2H, dmbpy-H₃), 8.32 (s, 2H, CHN₃), 8.33 (br s, 2H, dmbpy-H₃'). ¹³C NMR (100.6 MHz) CD₃CN $\delta_{\rm C}$ 20.7 (CH₃ dmbpy), 20.8 (CH₃ dmbpy) 55.8 (CH₂), 123.8 (CHN₃), 124.7 (CH, dmbpy-C₃), 125.0 (CH, dmbpy-C₃'), 127.9 (CH, 4-dmbpy-C₅), 128.5 (CH, Ph), 128.5 (CH, dmbpy-C₅'), 129.5 (CH, Ph), 129.6 (CH, Ph), 134.5 (C, Ph), 141.0 (C, CN₃), 150.4 (C, 4-dmbpy-C₄), 150.6 (C, dmbpy-C₄'), 151.7 (CH, dmbpy-C₆), 151.9 (CH, dmbpy-C₆'), 157.4 (C, dmbpy-C₂), 157.9 (C, dmbpy-C₂'). ESI-MS m/z [RuN₁₀C₄₂H₄₀]²⁺ predicted 393.123497, found 393.125224.

Synthesis of [Ru(phen)₂(btz)][PF₆]₂ (1d).

[RuCl₂(phen)₂] (100 mg, 0.19 mmol) was dissolved in 8 mL EtOH and the solution degassed by bubbling with N₂. AgPF₆ (99.1 mg, 0.39 mmol) and btz (654 mg, 0.21 mmol) were added to the dark purple reaction mixture and this was heated at reflux for 6 hours. After cooling to room temperature, the solvent was evaporated and the residue purified by silica gel column chromatography using a 7:1:0.5 MeCN:H₂O:KNO₃(aq) solvent system. The bright orange fractions were collected and the solvent evaporated. The residue was redissolved in MeCN, filtered to remove KNO₃ and the solvent evaporated once more. The product was then dissolved in a minimum amount of MeOH and an excess of NH₄PF₆ was added which caused an orange-red precipitate to form. This was filtered and washed with small portions of H₂O and Et₂O and allowed to dry. Yield 9.9 mg (4.9 %)

¹H NMR (400 MHz) CD₃CN $\delta_{\rm H}$ 5.39 (d, ²*J*_{HH} = 14.9 Hz, 2H, C*H*H of btz), 5.45 (d, ²*J*_{HH} = 15.1 Hz, 2H, CH*H* of btz), 7.02 (d, *J* = 7.1 Hz, 4H, *Ph*), 7.27 – 7.39 (m, 6H, *Ph*), 7.59 (dd, ³*J*_{HH} = 5.3 Hz, ³*J*_{HH} = 8.2 Hz, 2H, phen), 7.85 (dd, ³*J*_{HH} = 5.2 Hz, ³*J*_{HH} = 8.3 Hz, 2H, phen), 8.11 (dd, ⁴*J*_{HH} = 1.1 Hz, ³*J*_{HH} = 5.3 Hz, 2H, phen), 8.23 (d, ³*J*_{HH} = 8.9 Hz, 2H, phen), 8.28 (d, ³*J*_{HH} = 8.9 Hz, 2H, phen), 8.31 (s, 2H, *CHN*₃), 8.36 (dd, ⁴*J*_{HH} = 1.1 Hz, ³*J*_{HH} = 5.2 Hz, ³*J*_{HH} = 8.9 Hz, 2H, phen), 8.28 (d, ³*J*_{HH} = 8.9 Hz, 2H, phen), 8.70 (dd, ⁴*J*_{HH} = 1.1 Hz, ³*J*_{HH} = 8.3 Hz, 2H, phen); ¹³C NMR (100.6 MHz) CD₃CN $\delta_{\rm C}$ 55.8 (*C*H₂), 123.9 (*C*HN₃), 125.7 (*C*H, phen), 126.5 (*C*H, phen), 128.3 (*C*H, *Ph*), 128.3 (*C*H, phen), 129.4 (*C*H, *Ph*), 129.6 (*C*H, *Ph*), 131.0 (*C*, phen), 131.3 (*C*, phen) 134.3 (*C*, *Ph*), 137.1 (*C*H, phen), 137.2 (*C*H, phen-C₄²), 141.2 (*C*, CN₃), 148.6 (*C*, phen), 149.2 (*C*, phen), 153.5 (*C*H, phen), 153.9 (*C*H, phen).

References

- C. E. Welby, S. Grkinic, A. Zahid, B. S. Uppal, E. A. Gibson, C. R. Rice and P. I. P. Elliott, *Dalton Trans.*, 2012, 41, 7637-7646.
- 2. B. P. Sullivan, D. J. Salmon and T. J. Meyer, Inorg. Chem., 1978, 17, 3334-3341.
- 3. M. A. Bennett and A. K. Smith, J. Chem. Soc., Dalton Trans., 1974, 233-241.

Photolysis reactions

NMR data for cis-[Ru(bpy)₂(MeCN)₂]²⁺ (2a):

¹H NMR (400 MHz) CD₃CN $\delta_{\rm H}$ 7.27 (t, ³ $J_{\rm HH}$ = 6.6 Hz, 2H, H_5 -bpy), 7.61 (d, ³ $J_{\rm HH}$ = 5.6 Hz, 2H, H_6 -bpy), 7.86 (t, ³ $J_{\rm HH}$ = 6.5 Hz, 2H, H_5 -bpy), 7.96 (t, ³ $J_{\rm HH}$ = 7.9 Hz, 2H, H_4 -bpy), 8.29 (t, ³ $J_{\rm HH}$ = 7.9 Hz, 2H, H_4 -bpy), 8.39 (d, ³ $J_{\rm HH}$ = 8.2 Hz, 2H, H_3 -bpy), 8.53 (d, ³ $J_{\rm HH}$ = 8.1 Hz, 2H, H_3 -bpy), 9.32 (d, ³ $J_{\rm HH}$ = 5.6 Hz, 2H, H_6 -bpy). ¹³C NMR (100.6 MHz) CD₃CN $\delta_{\rm C}$ 124.1 (CH, C₃-bpy), 124.4 (CH, C₃-bpy), 127.3 (CH, C₅-bpy), 128.0 (CH, C₅-bpy), 138.5 (CH, C₄-bpy), 138.9 (CH, C₄-bpy), 152.7 (CH, C₆-bpy), 153.8 (CH, C₆-bpy), 157.7 (C, C₂-bpy), 158.5 (C, C₂-bpy)

Photolysis of [Ru(dmbpy)₂(btz)]²⁺ (1b)

NMR data for *cis*-[Ru(dmbpy)₂(MeCN)₂]²⁺ (2b):

¹H NMR (400 MHz) CD₃CN $\delta_{\rm H}$ 2.47 (s, 6H, CH₃), 2.71 (s, 6H, CH₃), 7.10 (d, ³J_{HH} = 6.1 Hz, 2H, H₅-bpy), ~7.37 (H₆-bpy), 7.68 (d, ³J_{HH} = 6.0 Hz, 2H, H₅-bpy), 8.22 (s, 2H, H₃-bpy), 8.37 (s, 2H, H₃-bpy), 9.11 (d, ³J_{HH} = 5.7 Hz, 2H, H₆-bpy); ¹³C NMR (100.6 MHz) CD₃CN $\delta_{\rm C}$ 20.7 (CH₃'-4-Dmbpy), 21.0 (CH₃-4-Dmbpy), 124.7 (CH, C₃-4-Dmbpy), 125.1 (CH, C₃-4-Dmbpy), 127.9 (CH, C₅-4-Dmbpy), 128.7 (CH, C₅-4-Dmbpy), 150.9 (C, C₄-4-Dmbpy), 151.2 (C, C₄-4-Dmbpy), 151.6 (CH, C₆-4-Dmbpy), 157.3 (C, C₂-4-Dmbpy), 158.1 (C, C₂-4-Dmbpy).

Photolysis of [Ru(phen)₂(btz)]²⁺ (1c)

NMR data for *cis*-[Ru(phen)₂(MeCN)₂]²⁺ (2c):

¹H NMR (400 MHz) CD₃CN $\delta_{\rm H}$ 5.61 (s, 4H, CH₂ of btz), 7.34 – 7.43 (m, 10H, *Ph*), 7.45 (dd, ³J_{HH} = 5.4 Hz, ³J_{HH} = 8.2 Hz, 2H, phen), 7.79 (dd, ⁴J_{HH} = 1.2 Hz, ³J_{HH} = 5.3 Hz, 2H, phen), 8.15 (s, 2H, CHN₃), 8.19 (d, ³J_{HH} = 8.9 Hz, 2H, phen-), 8.25 (dd, ³J_{HH} = 5.3 Hz, ³J_{HH} = 8.4 Hz, 2H, phen), 8.32 (d, ³J_{HH} = 8.9 Hz, 2H, phen), 8.47 (dd, ⁴J_{HH} = 1.3 Hz, ³J_{HH} = 8.3 Hz, 2H, phen), 8.89 (dd, ⁴J_{HH} = 1.3 Hz, ³J_{HH} = 8.4 Hz, 2H, phen), 9.76 (dd, ⁴J_{HH} = 1.3 Hz, ³J_{HH} = 5.2 Hz, 2H, phen); ¹³C NMR (100.6 MHz) CD₃CN $\delta_{\rm C}$ 54.1 (CH₂), 121.8 (CHN₃), 125.7 (CH, phen), 126.6 (CH, phen), 128.3 (CH, phen), 128.4 (CH, phen), 128.5, 128.9, 129.5 (CH, *Ph*), 131.0 (C, phen-C₃[°]), 131.4 (C, phen) 136.4 (C, *Ph*), 137.4 (CH, phen), 137.9 (CH, phen), 139.6 (C, CN₃), 148.7 (C, phen), 149.2 (C, phen), 153.7 (CH, phen), 154.7 (CH, phen).