Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2014

Supporting Information

1.	General procedure for the conjugation of porphyrins to amino-functionalised substrates.	2
2.	Spectra	4
3.	Structures of the porphyrins and nanoconjugates	16
4.	Absorption and emission spectra of porphyrins and nanoconjugates	17
5.	O2 calibrations in time-resolved domain	18
6.	$1/\tau$ vs. [O ₂] plots	19
7.	Lifetime and intensity Stern-Volmer plots	21
8.	Spectrum of the diode lamp used for the photostability experiments	22

General procedure for the conjugation of porphyrins to amino-functionalised substrates. Conjugate 3-poly-L-Lys: A solution of porphyrin 3 (3 mg, 4.0 x 10^{-3} mmol) in deionised water was treated with EDC (2 mg, 1.0 x 10^{-2} mmol) and NHS (2 mg, 1.7 x 10^{-2} mmol) and it was allowed to stand at room temperature for 30 minutes. The solution was then added to a solution of poly-L-lysine (30000-70000 MW) in 0.01 M aqueous NaHCO₃ (20 mL). The resulting mixture was shielded from light and shaken for 8 hours on a rotating shaker. The desired conjugate was purified by gel filtration. Methanol was added to the eluate, and the conjugate was recovered by filtration through membrane and dried *in vacuo*. The desired conjugate was obtained as a light orange-red solid. (42 mg, 84 % recovery). Estimated loading: 398 nmol/mg; UV/vis: (H₂O) λ (%): 401 (100), 517 (13.5), 552 (8.0)

Conjugate 4-poly-L-Lys: The conjugated nanospecies were obtained following the general procedure, using porphyrin **4** (3 mg, 3.0×10^{-3} mmol). The desired conjugate was obtained as a light red solid. (38 mg, 76 % recovery). Estimated loading: 263 nmol/mg; UV/vis: (H₂O) λ (%): 416 (100), 530 (10.0), 568 (3.5).

Conjugate 6-aminodextran: The desired conjugate was obtained following the general procedure, using aminodextran (10000 MW, 100 mg) and porphyrin **6** (4 mg, 3.4 x 10^{-3} mmol). The desired conjugate was obtained as a dark red solid. (72 mg, 72 % recovery). Estimated loading: 21.2 nmol/mg; UV/vis: (H₂O) λ (%): 397 (100), 513 (11.1), 549 (3.6).

Conjugate 7-aminodextran: The conjugated nanospecies were obtained following the general procedure, using aminodextran (10000 MW, 100 mg) and porphyrin **7** (4 mg, 3.7 x

 10^{-3} mmol). The desired conjugate was obtained as a brownish red solid. (81 mg, 81 % recovery). Estimated loading: 17.8 nmol/mg; UV/vis: (H₂O) λ (%): 408 (100), 527 (10), 561 (1.3).

Spectra

EPSRC National Mass Spectrometry Facility, Swansea

<<LJMGUI004-VM-MAP_0001>> Voyager Spec #1=>AdvBC(64,0.5,0.1)=>NF0.7[BP = 899.3, 6684]

Francesca Giuntini 05/10/2012 10:23:47	NL: 1.92E4 HULBOY384-OV-HNESN#19 20 RT: 1.49-1.58 AV: 2 T: FTMS - p NSI Full ms [50.00-515.00]	NL: 1.14E4 1.14E4 C47 H31 N8 O10 S3: C47 H31 N8 O10 S3 C47 H31 N8 O10 S3 B: 100000 Res .Pwr . @FWHM						
EPSRC National Centre Swansea LTQ Orbitrap XL		2.0534 2=3 322.3877 2=3 322.7182 2=3 2=3 2=3	Theoretical Isotope Mode	2.0446 322.3787				
V=964? NH + DEA	321.0452 z=3	321.3794 322 z=3 322 321.7103 z=3	321.0447	321.7132				

Structures of the porphyrins and nanoconjugates

Absorption and emission spectra of porphyrins and nanoconjugates

The graphs depicted below represent the absorption (solid lines) and the emission (dashed lines) of the porphyrins (black lines) and the nanoconjugates (dark red lines), as the intensity (normalised arbitrary units) versus wavelength (nanometers).

O2 calibrations in time-resolved domain

- The samples were held in a four-sided quartz cuvette equipped with a degassing bulb.
- Prior to measurements the sample was completely degassed by a series of freeze-pumpthaw cycles.
- Once degassed the concentration of oxygen in the sample cell was adjusted by backfilling the cell with a known pressure of air, and according to Henry's Law, $[O_2] \propto p_{air}$.
- Phosphorescence lifetime and intensity measurements (in correspondence of the emission λ_{max}) were performed at six oxygen concentrations within the 0 0.27 M range.
- Phosphorescence lifetimes were recorded using a time-correlated photon counting spectrometer. The samples were excited using the output of a pulsed nitrogen laser (VSL-337i OEM), which provided a 10Hz pulse train of pulse duration < 5 ns at 337 nm, with a pulse energy of ca. 5 μJ. Emission was collected at 90° to the excitation source and the emission wavelength was selected using a monochromator (Bentham TM300) and the selected light detected using a red-sensitive photon counting photomultiplier module (Hamamatsu H10682-1). The arrival times of multiple photons were recorded from each laser shot using a multi-channel scaler, and the data from a minimum of 10,000 laser shots was acquired to furnish the emission decay.

м	p _{air} (mmHg)	pO₂ (mmHg) ^ª	[O ₂] (M) ^b	l _{em}	1/I _{em}	τ (s)	1/τ
1	1.94	0.41	6.89x10 ⁻⁰⁷	1.00	1.00	1.03 x10 ⁻⁰⁵	9.71 x10 ⁺⁰⁵
2	102.99	21.63	3.66 x10 ⁻⁰⁵	0.49	2.03	6.04 x10 ⁻⁰⁶	1.66 x10 ⁺⁰⁵
3	283.09	59.45	1.01 x10 ⁻⁰⁴	0.24	4.14	2.74 x10 ⁻⁰⁶	3.65 x10 ⁺⁰⁵
4	452.99	95.13	1.61 x10 ⁻⁰⁴	0.17	5.85	2.09 x10 ⁻⁰⁶	4.78 x10 ⁺⁰⁵
5	588.90	123.67	2.09 x10 ⁻⁰⁴	0.15	6.63	1.56 x10 ⁻⁰⁶	6.41 x10 ⁺⁰⁵
6	760.00	159.60	2.70 x10 ⁻⁰⁴	0.10	9.65	1.15 x10 ⁻⁰⁶	8.70 x10 ⁺⁰⁵

• Example of calibration: porphyrin 3

M = measurement point

p_{air} = air pressure in the sample cell (in mmHg)

pO2 = oxygen pressure in sample cell (in mmHg)

[O₂] = molar concentration of oxygen in the sample cell

 I_{em} = intensity of phosphorescence measured at the emission λ_{max} (670 nm for 3)

 τ = triplet lifetime (in seconds)

 $pO_2 \text{ (mmHg)} = p_{air} \text{ (mmHg)} \times 0.21$

$$[O_2](M) = \frac{pO_2 \text{ mmHg}}{(760 \text{ mmHg atm}^{-1})x(757 \text{ atm M}^{-1})}$$

0.21: molar fraction of oxygen in air 760 mmHg atm⁻¹: conversion factor from Torr to atm 757 atmM⁻¹: Henry's law constant for oxygen in water at 25 °C

• The values $(1/\tau)$ or (1/I) were plotted against the oxygen concentration. The k_q values were obtained from the corresponding linear regression equations $(1/\tau = k_q[O_2] + 1/\tau_0)$ or $(1/I = k_q[O_2] + 1/I_0)$.

Spectrum of the diode lamp used for the photostability experiments