Supporting Information

New cyanopyridone based luminescent liquid crystalline materials: Synthesis

and characterization

Ahipa T.N., and Airody Vasudeva Adhikari *

Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India.

* Corresponding author. Tel.: +91 8242474046; fax: +918242474033.

E-mail addresses: avachem@gmail.com, avadhikari123@yahoo.co.in, avchem@nitk.ac.in.

Contents

1. ORTEP diagram and crystal data of 3a

2. PXRD data of $\mathbf{5 b}$ and $\mathbf{5 f}$
3. ORTEP diagram and crystal data of 3 a

Figure S1 ORTEP diagram of 3a with atom numbering. ORTEP diagram is drawn with 50% probability ellipsoids at 296 K .

Table S1 Crystal data and structure refinement for compound 3a

Compound	3a
Formula	$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$
Formula weight	332.36
CCDC number	966496
Temperature (K)	296
Crystal form	Block
Color	Colorless
Crystal system	Monoclinic
Space group	P 21/c
$a(\AA)$	20.3809(14)
$b(\AA)$	5.5940(4)
$c(\AA)$	15.3584(11)
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	105.915(4)
$\gamma\left({ }^{\circ}\right)$	90
Volume (\AA^{3})	1683.91
Z	4
Density (gcm^{-3})	1.311
$\mu\left(\mathrm{mm}^{-1}\right)$	0.09
F (000)	696.0
$\mathrm{h}_{\text {min, max }}$	-23,25
$\mathrm{k}_{\text {min, max }}$	-5,6

$1_{\min , \max }$	$-18,16$
Reflections collected	11617
Independent reflections	3240
$R_{\text {_all, }}, R_{\text {_obs }}$	$0.1022,0.0526$
$w R_{2 _ \text {all }}, w R_{2 _ \text {obs }}$	$0.1587,0.1373$
$\Delta \rho_{\text {min,max }}\left(\mathrm{e} \AA^{-3}\right)$	$-0.23,0.26$
GOOF	0.92

2. PXRD data of $\mathbf{5 b}$ and $\mathbf{5 f}$

Table S2 X-ray diffraction results of $\mathbf{5 b}$ and $\mathbf{5 f}$ in their hexagonal columnar phase

Compound	Phase	$\boldsymbol{d}_{\text {exp }} / \AA$	$\boldsymbol{d}_{\text {theo }} / \AA$	Miller Indices $h k$	Lattice Parameters (\AA) Lattice Area $S\left(\AA^{\AA}\right)$ Molecular Volume $\mathbf{V}\left(\AA^{\mathbf{3}}\right)$
5b	$\mathrm{Col}_{\mathrm{h}}$ at $30^{\circ} \mathrm{C}$	$\begin{gathered} 41.61 \\ 4.11 \end{gathered}$	41.61	$\begin{gathered} 10 \\ \text { halo }(h) \end{gathered}$	$\begin{gathered} \mathrm{a}=48.10 \AA \\ \mathrm{~S}=2675 \AA^{2} \\ \mathrm{~V}_{\text {cell }}=10995 \AA^{3} \\ \mathrm{~V}_{\text {mol }}=1329 \AA^{3} \\ \mathrm{Z}=8 \end{gathered}$
5 f	$\mathrm{Col}_{\mathrm{h}}$ at $30{ }^{\circ} \mathrm{C}$	$\begin{gathered} 37.96 \\ 4.31 \end{gathered}$	37.96	10 halo (h)	$\begin{gathered} \mathrm{a}=44 \AA \\ \mathrm{~S}=1666 \AA^{2} \\ \mathrm{~V}_{\text {cell }}=7180 \AA^{3} \\ \mathrm{~V}_{\text {mol }}=1267 \AA^{3} \\ \mathrm{Z}=6 \end{gathered}$

Note: The notations $d_{\text {exp }}$ and $d_{\text {theo }}$ are experimental and theoretical diffraction spacings, respectively. $d_{\text {theo }}$ is deduced from the lattice parameter $a\left(\mathrm{Col}_{\mathrm{h}}\right)$ from the following mathematical expression: $d_{\text {theo }}=\left[2 /\left(\sqrt{ } 3 N_{h k}\right)\right]$. $\left[\sum_{h k} d_{h k} \sqrt{ }\left(h^{2}+k^{2}+h k\right)\right]$, where $N_{h k}$ is the number of $h k$ reflections observed for the $\mathrm{Col}_{\mathrm{h}}$ phase. S is the lattice area, given by: $S=\left(a^{2} \sqrt{3}\right) / 2$ Cell volume, $V_{\text {cell }}=h . S$
(where h is the thickness of hexagonal stratum). The molecular volume is defined as $V_{m o l}=$ $M /(\delta \times 0.6022)$, where M is molecular weight; $V_{C H 2}(T)=26.5616+0.02023 T\left(T\right.$ in $\left.{ }^{\circ} \mathrm{C}, T_{0}=25^{\circ} \mathrm{C}\right)$; density $\delta=V_{C H 2}\left(T_{0}\right) / V_{C H 2}(T)$; the aggregation number or the number of molecular equivalents per stratum of column $Z=V_{\text {cell }} / V_{\text {mol }}$. I represents the intensity of reflections (VS: very strong, S : strong, M: medium, VW: very weak, br: broad); $h k$ are the indexations of the reflections corresponding to the $\mathrm{Col}_{\mathrm{h}}$ phase.

